474 HW 12 problems (highlighted problems are the ones to turn in)

	1. Build a PDA to accept each of the following languages L:
12.1j	a. BalDelim = { w : where w is a string of delimiters: (,), [,], {, }, that are prop-
-	erly balanced}.
(#1)	b. $\{a^{i}b^{j}: 2i = 3j + 1\}.$
	c. $\{w \in \{a,b\}^* : \#_a(w) = 2 \cdot \#_b(w)\}.$
<mark>12.3</mark>	$\mathbf{d.} \ \{\mathbf{a}^n \mathbf{b}^m : m \le n \le 2m\}.$
	$\mathbf{e} \cdot \{ w \in \{\mathbf{a}, \mathbf{b}\}^* : w = w^R \}.$
(#2) <mark>6+6+6</mark>	f. $\{a^{i}b^{j}c^{k}: i, j, k \ge 0 \text{ and } (i \ne j \text{ or } j \ne k)\}.$
	g. $\{w \in \{a, b\}^* : \text{ every prefix of } w \text{ has at least as many } a's as b's \}.$
<mark>12.4</mark>	h. $\{a^n b^m a^n : n, m \ge 0 \text{ and } m \text{ is even}\}.$
(#3) <mark>3 for</mark>	i. $\{xc^n : x \in \{a, b\}^*, \#_a(x) = n \text{ or } \#_b(x) = n\}.$
	j. { $a^{n}b^{m}: m \ge n, m-n \text{ is even}$ }.
each part	k. $\{a^m b^n c^p d^q : m, n, p, q \ge 0 \text{ and } m + n = p + q\}.$
	3. Let $L = \{ba^{m_1}ba^{m_2}ba^{m_3} ba^{m_n}: n \ge 2, m_1, m_2,, m_n \ge 0, \text{ and } m_i \neq m_j \text{ for } $
	some i, j .
<mark>12.5a</mark>	
	b Show a context free grammar that generates I
(#4) <mark>9</mark>	c. Prove that <i>L</i> is not regular.
	4. Consider the language $L = L_1 \cap L_2$, where $L_1 = \{ww^{\mathbb{R}} : w \in \{a, b\}^*\}$ and
	L ₂ = { $a^n b^* a^n : n \ge 0$ }.
<mark>12.6</mark>	a. List the first four strings in the lexicographic enumeration of L.
(#5) <mark>6</mark>	b. Write a context-free grammar to generate L.
	c. Show a natural PDA for L. (In other words, don't just build it from the gram-
	mar using one of the two-state constructions presented in this chapter.)
	d. Prove that <i>L</i> is not regular.
	5. Build a deterministic PDA to accept each of the following languages:
	a. L\$, where $L = \{ w \in \{a, b\}^* : \#_a(w) = \#_b(w) \}.$
	b. L\$ where $L = \{a^n b^+ a^m : n \ge 0 \text{ and } \exists k \ge 0 \ (m = 2k + n)\}.$
	6. Complete the proof that we started in Example 12.14. Specifically, show that if
	M is a PDA that accepts by accepting state alone, then there exists a PDA M'
	that accepts by accepting state and empty stack (our definition) where
<mark>13.1a</mark>	L(M') = L(M). CourseSmart
(#6) <mark>6</mark>	
, ,	
<mark>13.1b</mark>	12.5a Hint: In order to be deterministic, the first thing your PDA should do, before
(#7) <mark>6</mark>	it adds any input, is to push a special "bottom of stack" marker
<mark>13.1c</mark>	
(#8) 12	
	12.3 Clarification: It may help you to understand the language better if you replace "for some i, j" by
13.1d	"at least one pair i, j".
(#9) <mark>6</mark>	
	Hints (a) Have states and transitions to handle the "don't care" sections where we aren't worried about
	the number of b's. (b) One nonterminal for when the $m_i > m_j$, and one for when $m_i < m_j$. (c) Pumping
	theorem alone probably won't do it; also use closure property.
	Warning: Last time I taught the course, several students indicated that this was the most difficult

 For each of the following languages L, state whether L is regular, context-free but not regular, or not context-free and prove your answer. Becally, when we we then

problem in the assignment, and a few thought it was one of the hardest problems of the term.

a. $\{xy : x, y \in \{a, b\}^* \text{ and } |x| = |y|\}$. b. $\{(ab)^n a^n b^n : n > 0\}$. c. $\{x\#y : x, y \in \{0, 1\}^* \text{ and } x \neq y\}$. d. $\{a^i b^n : i, n > 0 \text{ and } i = n \text{ or } i = 2n\}$. **Recall**: When we use the pumping theorem to show a language is not context-free, we do not get to choose the k, we choose the w whose length is at least k. We do not get to choose how w is broken up into uvxyz (although the breakup has to meet the length constraints of the theorem), but we do get to choose how to pump the v and y (I.e. we can choose the q in uv^qxy^qz).