11.1, 2, 3
(\#1, 2, 3)
11.4
(\#4) (3)
11.6b
(\#5) (6)
11.6c
(\#6) (6)
11.6d
(\#7) (6)
11.6e (\#8)
(\#9) not
from
textbook
(6)
11.6h
(\#10) (6)
$11.6 i$
(\#11) (6)
11.6k
(\#12) (6)
11.8b
(\#13) (9)
11.9 (\#14)

1. Let $\Sigma=\{a, b\}$. For the languages that are defined by each of the following grammars, do each of the following:
i. List five strings that are in $L$.
ii. List five strings that are not in $L$ (or as many as there are, whichever is greater).
iii. Describe $L$ concisely. You can use regular expressions, expressions using variables (e.g., $\mathrm{a}^{n} \mathrm{~b}^{n}$, or set theoretic expressions (e.g., $\{x: \ldots\}$ ).
iv. Indicate whether or not $L$ is regular. Prove your answer.
a. $S \rightarrow \mathrm{aS}|S \mathrm{~b}| \varepsilon$
b. $S \rightarrow \mathrm{aSa}|\mathrm{b} S \mathrm{~b}| \mathrm{a} \mid \mathrm{b}$
c. $S \rightarrow \mathrm{aS}|\mathrm{b} S| \varepsilon$
d. $S \rightarrow \mathrm{a} S|\mathrm{aSb} S|_{\varepsilon}$
2. Let $G$ be the grammar of Example 11.12. Show a third parse tree that $G$ can produce for the string $(())()$.
3. Consider the following grammar $G$ :

$$
S \rightarrow 0 S_{1}|S S|_{10}
$$

Show a parse tree produced by $G$ for each of the following strings:
a. 010110.
b. 00101101 .
4. Consider the following context free grammar $G$ :

$$
\begin{aligned}
& S \rightarrow \mathrm{aSa} \\
& S \rightarrow T \\
& S \rightarrow \varepsilon \\
& T \rightarrow \mathrm{~b} T \\
& T \rightarrow \mathrm{c} T \\
& T \rightarrow \varepsilon
\end{aligned}
$$

One of these rules is redundant and could be removed without altering $L(G)$. Which one?
6. Show a context-free grammar for each of the following languages $L$ :
a. BalDelim $=\{w$ : where $w$ is a string of delimiters: $(),,[],,\{$,$\} , that are$ properly balanced $\}$.
b. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j}: 2 i=3 j+1\right\}$.
c. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j}: 2 i \neq 3 j+1\right\}$.
d. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(\boldsymbol{w})=2 \cdot \#_{\mathrm{b}}(\boldsymbol{w})\right\}$. $\}$.
e. $L=\left\{w \in\{a, b\}^{*}: w=w^{\mathrm{R}}\right\}$.
f. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $(i \neq j$ or $\left.j \neq k)\right\}$.
g. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $(k \leq i$ or $\left.k \leq j)\right\}$.
h. $\left\{\boldsymbol{w} \in\{a, b\}^{*}:\right.$ every prefix of $w$ has at least as many a's as $b$ 's $\}$.
i. $\left\{\mathrm{a}^{n} \mathrm{~b}^{m}: m \geq n, m-n\right.$ is even $\}$.
j. $\left\{\mathrm{a}^{m} \mathrm{~b}^{n} \mathrm{c}^{p} \mathrm{~d}^{q}: m, n, p, q \geq 0\right.$ and $\left.m+n=p+q\right\}$.
k. $\left\{x \mathrm{c}^{n}: x \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and $\left(\#_{\mathrm{a}}(x)=n\right.$ or $\left.\left.\#_{\mathrm{b}}(x)=n\right)\right\}$.
I. $\left\{b_{i} \# b_{i+1}^{\mathrm{R}}: b_{i}\right.$ is the binary representation of some integer $i, i \geq 0$, without leading zeros $\}$. (For example $101 \# 011 \in L$.)
m. $\left\{x^{\mathrm{R}_{\# y}}: x, y \in\{0,1\}^{*}\right.$ and $x$ is a substring of $\left.y\right\}$.
9. ( $\mathrm{t}-6$ ) Show the details of the definition of a CFG that generates $\left\{\mathrm{a}^{j} \mathrm{~b}^{j} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $\left.(i+j=k)\right\}$
8. Consider the unambiguous expression grammar $G^{\prime}$ of Example 11.19.
a. Trace a derivation of the string $\mathrm{id}+\mathrm{id} \mathrm{d}^{*} \mathrm{id}{ }^{*} \mathrm{id}$ in $G^{\prime}$.
b. Add exponentiation (**) and unary minus $(-)$ to $G^{\prime}$, assigning the highest precedence to unary minus, followed by exponentiation, multiplication, and addition, in that order.
9. Let $L=\left\{w \in\left\{\mathrm{a}, \mathrm{b}, \cup, \varepsilon,(,),^{*},{ }^{+}\right\}^{*}: w\right.$ is a syntactically legal regular expression $\}$.
a. Write an unambiguous context-free grammar that generates $L$. Your grammar should have a structure similar to the arithmetic expression grammar $G^{\prime}$ that we presented in Example 11.19. It should create parse trees that:

- Associate left given operators of equal precedence, and
- Correspond to assigning the following precedence levels to the operators (from highest to lowest):
-     * and $^{+}$
- concatenation
- $\cup$
b. Show the parse tree that your grammar will produce for the string $(a \cup b) b a *$.

