8.8(#1)

8.8 d, e

(#2)(3,6)

8.9

(#3) (<mark>9</mark>)

<mark>8.10</mark>a

(#4) <mark>(9)</mark>

<mark>8.16a</mark>

(#5)(6)

8.16b

(#6)

8.21

(#7)

<mark>8.21n</mark>

(#8) (<mark>12</mark>)

8.21_o

(#9)(3)

- 7. Prove that the regular languages are closed under each of the following operations:
 - **a.** $pref(L) = \{w : \exists x \in \Sigma^*(wx \in L)\}.$
 - **b.** $suff(L) = \{w : \exists x \in \Sigma^*(xw \in L)\}.$
 - **c.** $reverse(L) = \{x \in \Sigma^* : x = w^R \text{ for some } w \in L\}.$
 - d. letter substitution (as defined in Section 8.3).
- 8. Using the defintions of maxstring and mix given in Section 8.6, give a precise definition of each of the following languages:
 - **a.** $maxstring(A^nB^n)$.
 - **b.** $maxstring(a^i b^j c^k, 1 \le k \le j \le i).$
 - **c.** $maxstring(L_1L_2)$, where $L_1 = \{w \in \{a, b\}^* : w \text{ contains exactly one a} \}$ and $L_2 = \{a\}$.
 - **d.** mix((aba)*).
 - **e.** mix(a*b*).
- 9. Prove that the regular languages are not closed under mix.

Definitions of maxstring and mix: Examples 8.22 and 8.23.

- 10. Recall that $maxstring(L) = \{w : w \in L \text{ and } \forall z \in \Sigma^*(z \neq \varepsilon \rightarrow wz \notin L)\}.$
 - a. Prove that the regular languages are closed under maxstring.
 - **b.** If maxstring(L) is regular, must L also be regular? Prove your answer.
- s, A) such that L(M)=L, construct a DFSM $M^*=(K^*, \Sigma, \Delta^*, s^*, A^*)$ such that $L(M^*)=maxstring(L)$.

8.10-a I.e., given

a DFSM $M = (K, \Sigma, \delta,$

- **16.** Define two integers i and j to be *twin primes* \square iff both i and j are prime and |j-i|=2.
 - a. Let $L = \{w \in \{1\}^* : w \text{ is the unary notation for a natural number } n \text{ such that there exists a pair } p \text{ and } q \text{ of twin primes, both } > n.\}$ Is L regular?
 - **b.** Let $L = \{x, y : x \text{ is the decimal encoding of a positive integer } i, y \text{ is the decimal encoding of a positive integer } j, and i and j are twin primes}. Is L regular?$
 - For each of the following claims, state whether it is True or False. Prove your answer.
 - **a.** There are uncountably many non-regular languages over $\Sigma = \{a, b\}$.
 - b. The union of an infinite number of regular languages must be regular.
 - c. The union of an infinite number of regular languages is never regular.
 - **d.** If L_1 and L_2 are not regular languages, then $L_1 \cup L_2$ is not regular.
 - e. If L_1 and L_2 are regular languages, then $L_1 \otimes L_2 = \{w : w \in (L_1 L_2) \text{ or } w \in (L_2 L_1)\}$ is regular.
 - **f.** If L_1 and L_2 are regular languages and $L_1 \subseteq L \subseteq L_2$, then L must be regular.
 - g. The intersection of a regular language and a nonregular language must be regular.
 - h. The intersection of a regular language and a nonregular language must not be regular.
 - i. The intersection of two nonregular languages must not be regular.
 - The intersection of a finite number of nonregular languages must not be regular.
 - k. The intersection of an infinite number of regular languages must be regular.
 - I. It is possible that the concatenation of two nonregular languages is regular.
 - m. It is possible that the union of a regular language and a nonregular language is regular.
 - Every nonregular language can be described as the intersection of an infinite number of regular languages.
 - o. If L is a language that is not regular, then L^* is not regular.

9.1 (#10)

<mark>9.1b</mark>

(#11) (<mark>6</mark>)

<mark>9.1d</mark>

(#12)(6)

9.1g See note below

(#13) (<mark>6</mark>)

<mark>9.1i</mark>

(#14) (<mark>6</mark>)

- Define a decision procedure for each of the following questions. Argue that each
 of your decision procedures gives the correct answer and terminates.
 - **a.** Given two DFSMs M_1 and M_2 , is $L(M_1) = L(M_2)^R$?
 - **b.** Given two DFSMs M_1 and M_2 is $|L(M_1)| < |L(M_2)|$?
 - **c.** Given a regular grammar G and a regular expression α , is $L(G) = L(\alpha)$?
 - **d.** Given two regular expressions, α and β , do there exist any even length strings that are in $L(\alpha)$ but not $L(\beta)$?
 - e. Let $\Sigma = \{a,b\}$ and let α be a regular expression. Does the language generated by α contain all the even length strings in Σ^* .
 - **f.** Given an FSM M and a regular expression α , is it true that both L(M) and $L(\alpha)$ are finite and M accepts exactly two more strings than α generates?
 - **g.** Let $\Sigma = \{a, b\}$ and let α and β be regular expressions. Is the following sentence true:

$$(L(\beta) = a^*) \lor (\forall w (w \in \{a,b\}^* \land |w| \text{ even}) \rightarrow w \in L(\alpha)).$$

- **h.** Given a regular grammar G, is L(G) regular?
- i. Given a regular grammar G, does G generate any odd length strings?

9.1g:

There is a small error in the statement of the problem. a^* should be $\{a\}^*$

9.1b:

Note that |L(M)| means "the number of elements in the language accepted by the machine M. Note that for some machines M, the language is countably infinite.