8.1acegklptuz
(\#1)
8.1 e (\#2)
8.1 f
8.1g
8.1h
8.1k
8.1 m
(\#2-\#7)
3 pts. each
8.7a
(\#8) 9

1. For each of the following languages L, state whether L is regular or not and prove your answer:
a. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j}: i, j \geq 0\right.$ and $\left.i+j=5\right\}$.
b. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j}: i, j \geq 0\right.$ and $\left.i-j=5\right\}$.
c. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j}: i, j \geq 0\right.$ and $\left.|i-j| \equiv_{5} 0\right\}$.
d. $\left\{\boldsymbol{w} \in\{0,1, \#\}^{*}: w=x \# y\right.$, where $x, y \in\{0,1\}^{*}$ and $\left.|x| \cdot|y| \equiv{ }_{5} 0\right\}$.
e. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j}: 0 \leq i<j<2000\right\}$.
f. $\left\{\boldsymbol{w} \in\{\mathrm{Y}, \mathrm{N}\}^{*}: \boldsymbol{w}\right.$ contains at least two Y 's and at most two N 's $\}$.
g. $\left\{\boldsymbol{w}=x y: x, y \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$ and $|x|=|y|$ and $\left.\#_{\mathrm{a}}(x) \geq \#_{\mathrm{a}}(y)\right\}$.
h. $\left\{w=x y z y^{\mathrm{R}} x: x, y, z \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$.
i. $\left\{w=x y z y: x, y, z \in\{0,1\}^{+}\right\}$.
j. $\left\{w \in\{0,1\}^{*}: \#_{0}(w) \neq \#_{1}(w)\right\}$.
k. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: w=w^{\mathrm{R}}\right\}$.
l. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: \exists x \in\{\mathrm{a}, \mathrm{b}\}^{+}\left(\boldsymbol{w}=x \boldsymbol{x}^{\mathrm{R}} x\right)\right\}$.
m. $\left\{\boldsymbol{w} \in\{a, b\}^{*}\right.$: the number of occurrences of the substring ab equals the num ber of occurrences of the substring ba\}.
n. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains exactly two more b's than a's $\}$.
o. $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w=x y z,|x|=|y|=|z|\right.$, and $z=x$ with every a replaced by b and every b replaced by a$\}$. Example: abbbabbaa $\in L$, with $x=$ $\mathrm{abb}, y=\mathrm{bab}$, and $z=$ baa.
p. $\left\{w: w \in\{\mathrm{a}-\mathrm{z}\}^{*}\right.$ and the letters of w appear in reverse alphabetical order $\}$. For example, spoonfeed $\in L$.
q. $\left\{w: w \in\{\mathrm{a}-\mathrm{z}\}^{*}\right.$ every letter in \boldsymbol{w} appears at least twice $\}$. For example, unprosperousness $\in L$.
r. $\{w: w$ is the decimal encoding of a natural number in which the digits appear in a non-decreasing order without leading zeros $\}$.
s. $\left\{w\right.$ of the form: $\left\langle\right.$ integer $\left._{1}\right\rangle+\left\langle\right.$ integer $\left._{2}\right\rangle=\left\langle\right.$ integer $\left._{3}\right\rangle$, where each of the substrings $\left\langle\right.$ integer $\left._{1}\right\rangle,\left\langle\right.$ integer $\left._{2}\right\rangle$, and $\left\langle\right.$ integer $\left._{3}\right\rangle$ is an element of $\{0-$ 9\}* and integer $_{3}$ is the sum of integer $_{1}$ and integer $\left.{ }_{2}\right\}$. For example, $124+5=129 \in L$.
t. $L_{0}{ }^{*}$, where $L_{0}=\left\{\mathrm{ba}^{i} \mathrm{~b}^{j} \mathrm{a}^{k}, j \geq 0,0 \leq i \leq k\right\}$.
u. $\{w: w$ is the encoding of a date that occurs in a year that is a prime number $\}$. A date will be encoded as a string of the form $m m / d d / y y y y$, where each m, d, and y is drawn from $\{0-9\}$.
v. $\left\{w \in\{1\}^{*}: w\right.$ is, for some $n \geq 1$, the unary encoding of $\left.10^{n}\right\}$. (So $L=$ $\left\{1111111111,1^{100}, 1^{1000}, \ldots\right\}$.)
2. Prove by construction that the regular languages are closed under:
a. intersection.
b. set difference.
3. Prove that the regular languages are closed under each of the following operations:
a. $\operatorname{pref}(L)=\left\{w: \exists x \in \Sigma^{*}(w x \in L)\right\}$.
b. $\operatorname{suff}(L)=\left\{w: \exists x \in \Sigma^{*}(x w \in L)\right\}$.
c. $\operatorname{reverse}(L)=\left\{x \in \Sigma^{*}: x=w^{\mathrm{R}}\right.$ for some $\left.w \in L\right\}$.
d. letter substitution (as defined in Section 8.3).
8.7a Do this by construction, i.e., produce an algorithm that takes as input a DFSM $M=(K, \Sigma, \delta, s, A)$ that accepts L, and produces a DFSM $M^{\prime}=\left(K^{\prime}, \Sigma^{\prime}, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$ that accepts $\operatorname{pref}(L)$. Describe how to get from M to M^{\prime}
Hint: M' will have a lot of its elements in common with M, but it takes a somewhat complex calculation (based on M) to determine exactly what has to be changed.

On the main HW8 assignment document, I posted the author's solutions to the other three parts of problem 8.7, so that you will have more examples.

	$\begin{aligned} & 8.2 \mathrm{ac} \\ & (\# 9) \end{aligned}$
	8.3 (\#10)
	$\begin{aligned} & 8.4 a \\ & (\# 11) 6 \end{aligned}$
	$\begin{aligned} & 8.4 b \\ & (\# 12) \end{aligned}$
	8.7 (\#13)
	$\begin{aligned} & 6.18 \\ & (\# 14) 9 \end{aligned}$
	$\begin{aligned} & 6.20 \\ & (\# 15) \end{aligned}$
	Good practice problems for exams (no proof necessary)

2. For each of the following languages L, state whether L is regular or not and prove your answer:
a. $\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}\right.$: in each prefix x of $\left.\left.w, \#_{\mathrm{a}}(x)=\#_{\mathrm{b}}(x)=\#_{\mathrm{c}}(x)\right)\right\}$.
b. $\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}: \exists\right.$ some prefix x of $\left.w\left(\#_{\mathrm{a}}(x)=\#_{\mathrm{b}}(x)=\#_{\mathrm{c}}(x)\right)\right\}$.
c. $\left\{w \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*}: \exists\right.$ some prefix x of $w\left(x \neq \varepsilon\right.$ and $\left.\left.\#_{\mathrm{a}}(x)=\#_{\mathrm{b}}(x)=\#_{\mathrm{c}}(x)\right)\right\}$.
3. Define the following two languages:

$$
\begin{aligned}
& \quad L_{\mathrm{a}}=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*}: \text { in each prefix } x \text { of } w, \#_{\mathrm{a}}(x) \geq \#_{\mathrm{b}}(x)\right\} . \\
& \quad L_{\mathrm{b}}=\left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*} \text { : in each prefix } x \text { of } w, \#_{\mathrm{b}}(x) \geq \#_{\mathrm{a}}(x)\right\} . \\
& \text { a. Let } L_{1}=L_{\mathrm{a}} \cap L_{\mathrm{b}} \text {. Is } L_{1} \text { regular? Prove your answer. } \\
& \text { b. Let } L_{2}=L_{\mathrm{a}} \cup L_{\mathrm{b}} \text {. Is } L_{2} \text { regular? Prove your answer. }
\end{aligned}
$$

4. For each of the following languages L, state whether L is regular or not and prove your answer:
a. $\left\{u w w^{\mathrm{R}} v: u, v, w \in\{\mathrm{a}, \mathrm{b}\}^{+}\right\}$.
b. $\left\{x y z y^{\mathrm{R}} x: x, y, z \in\{\mathrm{a}, \mathrm{b}\}^{+}\right\}$.
5. Prove that the regular languages are closed under each of the following operations:
a. $\operatorname{pref}(L)=\left\{w: \exists x \in \Sigma^{*}(w x \in L)\right\}$.
b. $\operatorname{suff}(L)=\left\{w: \exists x \in \Sigma^{*}(x w \in L)\right\}$.
c. $\operatorname{reverse}(L)=\left\{x \in \Sigma^{*}: x=w^{\mathrm{R}}\right.$ for some $\left.w \in L\right\}$.
d. letter substitution (as defined in Section 8.3).
6. Using the defintions of maxstring and mix given in Section 8.6 , give a precise definition of each of the following languages:
a. maxstring $\left(\mathrm{A}^{n} \mathrm{~B}^{n}\right)$.
b. maxstring $\left(\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}, 1 \leq k \leq j \leq i\right)$.
c. maxstring $\left(L_{1} L_{2}\right)$, where $L_{1}=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains exactly one a$\}$ and $L_{2}=\{a\}$.
d. $\operatorname{mix}\left((\mathrm{aba})^{*}\right)$.
e. $\operatorname{mix}\left(\mathrm{a}^{*} \mathrm{~b}^{*}\right)$.
7. Prove that the regular languages are not closed under mix.
8. Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Let $L=\{\varepsilon, \mathrm{a}, \mathrm{b}\}$. Let R be a relation defined on Σ^{*} as follows: $\forall x y$ ($x R y$ iff $y=x \mathrm{~b}$). Let R^{\prime} be the reflexive, transitive closure of R. Let $L^{\prime}=\left\{x: \exists y \in L\left(y R^{\prime} x\right)\right\}$. Write a regular expression for L^{\prime}.

Note on 6.18 Transitive and reflexive closures are introduced in Section A. 5 Closures under various operations are also mentioned on pages 17,57 , and 72 .
20. For each of the following statements, state whether it is True or False. Prove your answer.
a. $(a b)^{*} a=a(b a)^{*}$.
b. $(a \cup b)^{*} b(a \cup b)^{*}=a^{*} b(a \cup b)^{*}$.
c. $(\mathrm{a} \cup \mathrm{b})^{*} \mathrm{~b}(\mathrm{a} \cup \mathrm{b})^{*} \cup(\mathrm{a} \cup \mathrm{b})^{*} \mathrm{a}(\mathrm{a} \cup \mathrm{b})^{*}=(\mathrm{a} \cup \mathrm{b})^{*}$.
d. $(\mathrm{a} \cup \mathrm{b})^{*} \mathrm{~b}(\mathrm{a} \cup \mathrm{b})^{*} \cup(\mathrm{a} \cup \mathrm{b})^{*} \mathrm{a}(\mathrm{a} \cup \mathrm{b})^{*}=(\mathrm{a} \cup \mathrm{b})^{+}$.
e. $(a \cup b)^{*} b a(a \cup b) * \cup a^{*} b^{*}=(a \cup b)^{*}$.
f. $a^{*} b(a \cup b)^{*}=(a \cup b)^{*} b(a \cup b)^{*}$.
g. If α and β are any two regular expressions, then $(\alpha \cup \beta)^{*}=\alpha(\beta \alpha \cup \alpha)$.
h. If α and β are any two regular expressions, then $(\alpha \beta)^{*} \alpha=\alpha(\beta \alpha)^{*}$.

