474 HW 2 problems (highlighted problems are the ones to turn in)

	producting (inglinging producting and and ones to tall in,		
3.1	 Consider the following problem: Given a digital circuit C, does C output 1 on all inputs? Describe this problem as a language to be decided. 		
<mark>3.2</mark>	Using the technique we used in Example 3.8 to describe addition, describe square root as a language recognition problem.		
3.2	3. Consider the problem of encrypting a password, given an encryption key. Formulate this problem as a language recognition problem.		
	4. Consider the optical character recognition (OCR) problem: Given an array of		
2.4	black and white pixels and a set of characters, determine which character best		
3.4	matches the pixel array. Formulate this problem as a language recognition problem.		
<mark>3.5</mark>	5. Consider the language $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$, discussed in Section 3.3.3. We might consider the following design for a PDA to accept $A^nB^nC^n$: As each a		
	is read, push two a's onto the stack. Then pop one a for each b and one a for each c. If the input and the stack come out even, accept. Otherwise reject. Why doesn't this work?		
	6. Define a PDA-2 to be a PDA with two stacks (instead of one). Assume that the		
<mark>3.6</mark>	stacks can be manipulated independently and that the machine accepts iff it is		
	in an accepting state and both stacks are empty when it runs out of input. De-		
	scribe the operation of a PDA-2 that accepts $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$. (<i>Note</i> : We will see, in Section 17.5.2, that the PDA-2 is equivalent to the Turing		
		machine in the sense that any language that can be accepted by one can be ac-	
	cepted by the other.)		
	1. Describe in clear English or pseudocode a decision procedure to answer the		
4.1	question, "Given a list of integers N and an individual integer n , is there any element of N that is a factor of n ?"		
<mark>4.2</mark>	2. Given a Java program p and the input 0, consider the question, "Does p ever output anything?"		
	a. Describe a semidecision procedure that answers this question.		
	b. Is there an obvious way to turn your answer to part a into a decision procedure?		
<mark>4.3</mark> , 4.4	3. Recall the function $chop(L)$, defined in Example 4.10. Let $L = \{w \in \{a, b\}^* : w = w^R\}$. What is $chop(L)$?		
	4. Are the following sets closed under the following operations? Prove your answer. If a set is not closed under the operation, what is its closure under the operation?	One more problem,	
4.4c	a. $L = \{w \in \{a, b\}^* : w \text{ ends in } a\}$ under the function $odds$, defined on strings as follows: $odds(s) = \text{the string that is formed by concatenating together all of the odd numbered characters of s. (Start numbering the characters at 1.) For example, odds(\text{ababbbb}) = \text{aabb}.$	not from the textbook:	
	b. FIN (the set of finite languages) under the function <i>oddsL</i> , defined on lan-	#14 is described in detail on	
	guages as follows:	the assignment document, so I	
	$oddsL(L) = \{w : \exists x \in L (w = odds(x))\}.$		
	c. INF (the set of infinite languages) under the function oddsL.	do not repeat that description	
	d. FIN under the function <i>maxstring</i> , defined in Example 8.22.	here.	
	e. INF under the function maxstring.		
	2. Show a DFSM to accept each of the following languages:		
	 a. {w∈ {a,b}*: every a in w is immediately preceded and followed by b}. b. {w∈ {a,b}*: w does not end in ba}. 		
5.2	c. $\{w \in \{0,1\}^* : w \text{ corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}.$		
<mark>5.2a</mark>	d. $\{w \in \{0,1\}^* : w \text{ corresponds to the binary encoding, without leading 0's, of natural numbers that are powers of 4}.$		
5.2b	 e. {w ∈ {0-9}*: w corresponds to the decimal encoding, without leading 0's, of an odd natural number}. f. {w ∈ {0,1}*: w has 001 as a substring}. 		
	g. $\{w \in \{0,1\}^* : w \text{ does not have 001 as a substring}\}$.		
	h. $\{w \in \{a,b\}^* : w \text{ has bbab as a substring}\}.$		
	i. $\{w \in \{a, b\}^* : w \text{ has neither ab nor bb as a substring}\}.$		
	j. $\{w \in \{a,b\}^* : w \text{ has both aa and bb as a substrings}\}.$		
	k. $\{w \in \{a, b\}^* : w \text{ contains at least two b's that are not immediately followed by an a}\}$.		
	1. $\{w \in \{0,1\}^* : w \text{ has no more than one pair of consecutive 0's and no more than one pair of consecutive 1's}.$		
	m (an = [0, 1]* ; none of the profives of an ends in 0]		

 $\mathbf{m} \cdot \{ w \in \{0,1\}^* : \text{ none of the prefixes of } w \text{ ends in } 0 \}.$

 $\mathbf{n.} \ \{ w \in \{ \mathtt{a}, \mathtt{b} \}^* : (\#_{\mathtt{a}}(w) \ + \ 2 \cdot \#_{\mathtt{b}}(w)) \equiv_{5} 0 \}. \ (\#_{\mathtt{a}}(w) \text{ is the number of a's in } w).$