

TM Formal Definition

A (deterministic) Turing machine M is $(K, \Sigma, \Gamma, \delta, s, H)$, where

- K is a finite set of states;
- Σ is the input alphabet, which does not contain \notin;
- Γ is the tape alphabet,
which must contain \notin and have Σ as a subset.
- $s \in K$ is the initial state;
- $H \subseteq K$ is the set of halting states;
- δ is the transition function:
$(K-H) \quad \times \Gamma \quad$ to $K \times \Gamma \times \quad\{\rightarrow, \leftarrow\}$
$\begin{aligned} \text { non-halting } \\ \text { state }\end{aligned} \underset{\text { char }}{\times \text { tape }} \rightarrow \underset{\text { char }}{\text { state } \times \text { tape }} \quad \times \underset{\text { direction to move }}{(R \text { or } L)}$
state char \rightarrow Char \times (RorL)

Notes on the Definition

1. The input tape is infinite in both directions.
2. δ is a function, not a relation. So this is a definition for deterministic Turing machines.
3. δ must be defined for all (state, tape symbol) pairs unless the state is a halting state.
4. Turing machines do not necessarily halt (unlike FSM's and most PDAs). Why? To halt, they must enter a halting state. Otherwise they loop.
5. Turing machines generate output, so they can compute functions.

An Example

M takes as input a string in the language：

$$
\left\{a^{\prime} b^{j}, 0 \leq j \leq i\right\},
$$

and adds b＇s as required to make the number of b＇s equal the number of a＇s．

The input to M will look like this：

The output should be：

Formal Definition of M


```
\((\quad((1, \square),(2, \square, \rightarrow))\) ，
```



```
    ((1,b), (2,q, ->)),
    ((1,$),(2,\sqcup, ->)),
    ((1,#),(2, 山, ->)),
    ((2, 口), (6,$, ->)),
    ((2, a), (3, S, ->)),
    ((2, b),(3,$, ->)),
    ((2,$), (3, $, ->)),
    ((2,#), (3, $, ->)),
    ((3, Ш), (4,#, \leftarrow)),
    ((3,a), (3, a, ->)),
    ((3,b), (4,#, \leftarrow)),
    ((3,$), (3, $, ->)),
    ((3,#), (3,#, ->)),
    ((4, ), (5, 〕, ->)),
    ((4, a),(3, $, ->)),
    ((4,$), (4,$,\leftarrow)),
    ((4,#), (4,#, \leftarrow)),
    ((5,\rrbracket),(6,\square,\leftarrow)),} {}{\begin{array}{l}{\mathrm{ State 6 is a halting state and so has no}}\\{\mathrm{ transitions out of it }}
    ((5,$), (5,a,->)),
((5,#),(5,b,->)))
```

These four transitions are required because M must be defined for every state／input pair，but since it isn＇t possi－ ble to see anything except \square in state 1 ，it doesn＇t matter what they do．
\｛Three more unusable elements of δ ． \｛We＇ll omit the rest here for clarity．
transitions out of it

Notes on Programming

Turing machinesa strong procedural feel, with one phase coming after another.

There are common idioms, such as
"scan left until you find a blank"

There are some common ways to scan back and forth marking things off.

Often there is a final phase to fix up the output.
Even a very simple machine can be a nuisance to write.

Halting

A DFSM M, on input w, is guaranteed to halt in $|w|$ steps.
A PDA M, on input w, is not guaranteed to halt. To see why, consider again $M=$

But there exists an algorithm to construct an equivalent PDA M^{\prime} that is guaranteed to halt.

- A TM M, on input w, is not guaranteed to halt. And there is no algorithm to construct an equivalent TM that is guaranteed to halt.

Formalize TM computations

A configuration of TM $M=(K, \Sigma, \Gamma, s, H)$ is an element of:
$\times\left((\Gamma-\{\notin\}) \Gamma^{*}\right) \cup\{\varepsilon\} \times \Gamma \times\left(\Gamma^{*}(\Gamma-\{\notin\})\right) \cup\{\varepsilon\}$
state
before
current
tape square
current
tape square
after current tape square

Example Configurations

As a 4-tuple
Shorthand $(q, \mathrm{ab}, \mathrm{b}, \mathrm{b}) \quad(q, \mathrm{abbb})$

(1) $(q, a b, b, b) \quad$ written more simply as (q, abbb)
(2) ($q, \varepsilon, \notin, a b b b$) written more simply as ($q, \underline{\notin} \overline{\mathrm{a}} \mathrm{b} b)$

Initial configuration is always ($s, \underline{\npreceq} w$)

Yields and Computations

$\left(q_{1}, w_{1}\right) \vdash_{M}\left(q_{2}, w_{2}\right)$ iff $\left(q_{2}, w_{2}\right)$ is derivable via δ in one step.
For any TM M, let \vdash_{M} * be the reflexive, transitive closure of $\left.\right|_{M}$.
Configuration C_{1} yields configuration C_{2} if: $C_{1} \vdash_{M}{ }^{*} C_{2}$.
A path through M is a sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that C_{0} is the initial configuration and:
$C_{0} \vdash_{\mathrm{M}} C_{1} \vdash_{\mathrm{M}} \mathrm{C}_{2} \vdash_{\mathrm{M}} \ldots \vdash_{\mathrm{M}} C_{n}$.

A computation by M is a path that halts.
If a computation is of length n (has n steps), we can also write:
$C_{0} \vdash_{M}{ }^{n} C_{n}$

Exercise

If n and m are non-negative integers, monus(n, m) is defined to be $n-m$ if $n>m$, and 0 if $n \leq m$.

Draw the diagram for a TM M whose input is $1 \mathrm{n}, 1 \mathrm{~m}$ and whose output is 1 monus (n, m). When M halts, the read/write head should be positioned on the blank before the first 1.

(not used in class 2018)Exercise

今 A TM to recognize $\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$. If the input string is in the language, the machine should halt with y as its current tape symbol
If not, it should halt with n as its current tape symbol.
The final symbols on the rest of the tape may be anything.

TMs are complicated

... and very low-level!
We need higher-level "abbreviations".

- Macros
- Subroutines

A Macro language for Turing Machines

(1) Define some basic machines

- Symbol writing machines

For each $x \in \Gamma$, define M_{x}, written as just x, to be a machine that writes x. Read-write head ends up in original position.

You need to learn (but not memorize) this simple language. I
R: for each $x \in \Gamma, \delta(s, x)=(h, x, \rightarrow)$ will use it and I expect
L: for each $x \in \Gamma, \delta(s, x)=(h, x, \leftarrow)$ you to use it on HW and tests.

- Machines that simply halt:
h, which simply halts (don't care whether it accepts).
n, which halts and rejects.
y, which halts and accepts.

Checking Inputs and Combining Machines

Next we need to describe how to:

- Check the tape and branch based on what character we see, and
- Combine the basic machines to form larger ones.

To do this, we need two forms:

- $M_{1} M_{2}$
- $M_{1} \xrightarrow{\text { <condition> }} M_{2}$

[^0]

Blank/Non-blank Search Machines

Find the first blank square to the right of the current square.
Find the first blank square to the left of the current square.
Find the first nonblank square to the right of the current square.

Find the first nonblank square to the left of the current square
$\mathrm{L}_{\text {R }}$
$\mathrm{R}_{\neg \mathbb{E}}$
$\mathrm{R}_{\text {末 }}$

$$
\pi
$$

$$
\begin{array}{ll}
\text { More Search Machines }
\end{array}
$$

[^0]: P湤

 ## Turing Machines Macros Cont'd

 Example:

 - Start in the start state of M_{1}.
 - Compute until M_{1} reaches a halt state.
 - Examine the tape and take the appropriate transition.
 - Start in the start state of the next machine, etc.
 - Halt if any component reaches a halt state and has no place to go.
 - If any component fails to halt, then the entire machine may fail to halt.

