


~~~~	An Example					
(a [*] a [*] a)	<i>M</i> takes as input a string in the language:					
000	$\{a^{j}b^{j}, 0\leq j\leq l\},$					
	and adds b's as required to make the number of b's equal the number of a's.					
	The input to <i>M</i> will look like this:					
	<b>a</b> a a b <b>a a</b>					
	1					
	The output should be:					
	a a a b b b					

R	Formal Definition of M
	$M = (\{1, 2, 3, 4, 5, 6\}, \{a, b\}, \{a, b, \Box, \$, \#\}, \delta, 1, \{6\}), \text{where } \delta =$
	$( ((1, \Box), (2, \Box, \rightarrow)), \\ ((1, a), (2, q, \rightarrow)), \\ ((1, b), (2, q, \rightarrow)), \\ ((1, \$), (2, \Box, \rightarrow)), \\ ((1, \$), (2, \Box, \rightarrow)), \\ ((2, \Box), (6, \$, \rightarrow)), \\ ((2, a), (3, \$, \rightarrow)), \end{cases}$ These four transitions are required because <i>M</i> must be defined for every state/input pair, but since it isn't possible to see anything except $\Box$ in state 1, it doesn't matter what they do.
	$\begin{array}{c} ((2, \mathbf{b}), (3, \$, \rightarrow)), \\ ((2, \$), (3, \$, \rightarrow)), \\ ((2, \#), (3, \$, \rightarrow)), \end{array} \end{array} \begin{array}{c} \text{Three more unusable elements of } \delta. \\ \text{We'll omit the rest here for clarity.} \end{array}$
	$((3, \Box), (4, \#, \leftarrow)), ((3, a), (3, a, \rightarrow)), ((3, b), (4, \#, \leftarrow)), ((3, \$), (3, \$, \rightarrow)), ((3, \#), (3, \#, \rightarrow)), ((4, \Box), (5, \Box, \rightarrow)), ((4, a), (3, \$, \rightarrow)), $
	$ \begin{array}{l} ((4, 4), (4, 5), (-, 0), \\ ((4, 5), (4, 5), (-, 0)), \\ ((5, 0), (6, 0), (-, 0)), \\ ((5, 5), (5, a, \rightarrow)), \\ ((5, 5), (5, a, \rightarrow)), \\ ((5, 7), (5, b, \rightarrow))) \end{array} \\ \end{array} \\ \begin{array}{l} \text{State 6 is a halting state and so has no} \\ \text{transitions out of it} \\ \end{array} $



























































































MA	More macros			
1	$M_1 \xrightarrow[b]{a} M_2$	becomes	$M_1$ a, b $M_2$	
000	$M_1$ all elems of $\Gamma_{ m I}$ $M_2$	becomes	$M_1 \longrightarrow M_2$	
	Variables		$M_1 M_2$	
	$M_1 \xrightarrow{\text{all elems of } \Gamma} M_2$	becomes and <i>x</i> takes on the valu the current square	$M_1 \xrightarrow{x \leftarrow \neg a} M_2$ e of	
	$M_1 \xrightarrow{a,b} M_2$	becomes and <i>x</i> takes on the valu the current square	$\stackrel{M_1 _ x \leftarrow a, b}{\longrightarrow} M_2$	
	e.g., > <u>x ← ⊣</u> æ <i>Rx</i>	if <i>x</i> = <i>y</i> then take the tra if the current square is i	$M_1 _ x = y _ M_2$ ansition not blank, go right and copy it.	



	More Search Machines				
3.4 a	L _a	Find the first occurrence of ${\bf a}$ to the left of the current square.			
SON A	$R_{a,b}$	Find the first occurrence of $a$ or $b$ to the right of the current square.			
	$ \begin{array}{c} L_{a,b} \ \underline{\ a} \ M_1 \\ b \\ M_2 \end{array} $	Find the first occurrence of a or b to the left of the current square, then go to $M_1$ if the detected character is a; go to $M_2$ if the detected character is b.			
	L _{x←a,b}	Find the first occurrence of a or b to the left of the current square and set $x$ to the value found.			
	L _{x-a,b} Rx	Find the first occurrence of a or b to the left of the current square, set x to the value found, move one square to the right, and write $x$ (a or b).			