

An Example of Pumping: AⁿBⁿCⁿ

 $A^nB^nC^n = \{a^nb^nc^n, n \ge 0\}$

ないないで、このであるとうというできたとう

Choose $w = a^k b^k c^k$ (we don't get to choose the k) 1 | 2 | 3 (the regions: all a's, all b's, all c's)

If either *v* or *y* spans two regions, then let q = 2 (i.e., pump in once). The resulting string will have letters out of order and thus not be in AⁿBⁿCⁿ.

Other possibilities for (v region, y region)

- (1, 1): q=2 gives us more a's than b's or c's. (2, 2) and (3,3) similar.
- (1, 2): q=2 gives more a's and b's than c's. (2, 3) is similar.
- (1, 3): Impossible because |vxy| must be $\leq k$.

NA WOOD	Nested and Cross-Serial Dependencies PalEven = { ww^R : $w \in \{a, b\}^*$ }
	a a b b a a L L L The dependencies are nested. Context-free.
	WcW = { $wcw: w \in \{a, b\}^*$ } aabcaab
	Cross-serial dependencies. Not context-free.

Closure Under Union

Let $G_1 = (V_1, \Sigma_1, R_1, S_1)$, and $G_2 = (V_2, \Sigma_2, R_2, S_2)$.

Assume that G_1 and G_2 have disjoint sets of nonterminals, not including *S*.

Let $L = L(G_1) \cup L(G_2)$.

A CONTRACTOR

We can show that *L* is CF by exhibiting a CFG for it:

$$G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, \\ R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}, \\ S)$$

Closure Under Concatenation

```
Let G_1 = (V_1, \Sigma_1, R_1, S_1), and
G_2 = (V_2, \Sigma_2, R_2, S_2).
```

Assume that G_1 and G_2 have disjoint sets of nonterminals, not including *S*.

Let $L = L(G_1)L(G_2)$.

A CAR CONTRACTOR

We can show that *L* is CF by exhibiting a CFG for it:

 $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, \\ R_1 \cup R_2 \cup \{S \rightarrow S_1 S_2\}, \\ S)$

Closure Under Kleene Star

Let $G = (V, \Sigma, R, S_1)$.

Assume that G does not have the nonterminal S.

Let $L = L(G)^*$.

We can show that *L* is CF by exhibiting a CFG for it:

$$G = (V_1 \cup \{S\}, \Sigma_1, \\ R_1 \cup \{S \rightarrow \varepsilon, S \rightarrow S S_1\}, \\ S)$$

Closure Under Reverse

 $L^{\mathsf{R}} = \{ w \in \Sigma^* : w = x^{\mathsf{R}} \text{ for some } x \in L \}.$

XXV

Let $G = (V, \Sigma, R, S)$ be in Chomsky normal form.

Every rule in *G* is of the form $X \rightarrow BC$ or $X \rightarrow a$, where *X*, *B*, and *C* are elements of $V - \Sigma$ and $a \in \Sigma$.

• $X \to a$: $L(X) = \{a\}$. $\{a\}^{\mathbb{R}} = \{a\}$.

• $X \to BC$: L(X) = L(B)L(C). $(L(B)L(C))^{\mathsf{R}} = L(C)^{\mathsf{R}}L(B)^{\mathsf{R}}$.

Construct, from *G*, a new grammar *G*', such that $L(G') = L^{R}$: $G' = (V_G, \Sigma_G, R', S_G)$, where *R*' is constructed as follows:

- For every rule in *G* of the form $X \rightarrow BC$, add to *R*' the rule $X \rightarrow CB$.
- For every rule in *G* of the form $X \rightarrow a$, add to *R*' the rule $X \rightarrow a$.