

Pumping Theorem contrapositive

- We want to write it in contrapositive form, so we can use it to show a language is NOT context-free. Original:

If L is a context-free language, then
$\exists k \geq 1 \quad(\forall$ strings $w \in L$, where $|w| \geq k$

$$
\begin{aligned}
(\exists u, v, x, y, z \quad & (w=u v x y z, \\
& v y \neq \varepsilon, \\
& |v x y| \leq k, \text { and } \\
& \left.\left.\left.\forall q \geq 0\left(u v^{q} x y^{q} z \text { is in } L\right)\right)\right)\right) .
\end{aligned}
$$

Contrapositive: If
$\forall k \geq 1$ (\exists string $w \in L$, where $|w| \geq k$

$$
\begin{aligned}
& (\forall u, v, x, y, z \\
& (w=u v x y z, \\
& v y \neq \varepsilon, \\
& |v x y| \leq k, \text { and }
\end{aligned}
$$

$$
\left.\left.\left.\exists q \geq 0\left(u v^{q} X y^{q} z \text { is not in } L\right)\right)\right)\right)
$$

家
 Regular vs. CF Pumping Theorems

Similarities:

- We don't get to choose k.
- We choose w, the string to be pumped, based on k .
- We don't get to choose how w is broken up (into xyz or uvxyz)
- We choose a value for q that shows that w isn't pumpable.
- We may apply closure theorems before we start.
Things that are different in CFL Pumping Theorem:
- Two regions, v and y, must be pumped in tandem.
- We don't know anything about where in the strings v and y will fall in the string w. All we know is that they are reasonably "close together", i.e.,
$|v x y| \leq k$.
- Either v or y may be empty, but not both.

An Example of Pumping: $\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathbf{n}} \mathrm{C}^{\mathrm{n}}$

$A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} c^{n}, n \geq 0\right\}$
Choose $w=\mathrm{a}^{k} \mathrm{~b}^{k} c^{k} \quad$ (we don't get to choose the k) $1|2| 3$ (the regions: all a's, all b's, all c's)

If either v or y spans two regions, then let $q=2$ (i.e., pump in once). The resulting string will have letters out of order and thus not be in $\mathrm{A}^{n} \mathrm{~B}^{n} \mathrm{C}^{\mathrm{n}}$.

Other possibilities for (v region, y region)
$(1,1)$: $q=2$ gives us more a's than b's or c's. $(2,2)$ and $(3,3)$ similar.
$(1,2)$: $q=2$ gives more a's and b's than c's. $(2,3)$ is similar.
(1, 3): Impossible because |vxy| must be $\leq k$.

An Example of Pumping: $\left\{a^{n^{2}}, \boldsymbol{n} \geq \mathbf{0}\right\}$

$L=\left\{a^{n^{2}}, n \geq 0\right\}$

The elements of L :

n	w
0	ε
1	a^{1}
2	a^{4}
3	a^{9}
4	a^{16}
5	a^{25}
6	a^{36}

Nested and Cross-Serial Dependencies

PalEven $=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$

The dependencies are nested. Context-free.
$W c W=\left\{w c w: w \in\{a, b\}^{*}\right\}$

Cross-serial dependencies. Not context-free.

```
F Work with one or two other students on these
{anmman
WcW = {wcw : w \in {a, b}*}
{(ab)nan}\mp@subsup{}{}{n}\mp@subsup{b}{}{n}:n>0
{xcy : x, y\in{0,1}* and x\not=y}
```


Halting

It is possible that a PDA may

- not halt,
- never finish reading its input.

Let $\Sigma=\{\mathrm{a}\}$ and consider $M=$

$L(M)=\{a\}:(1, \mathrm{a}, \varepsilon)|-(2, \mathrm{a}, \mathrm{a})|-(3, \varepsilon, \varepsilon)$
On any other input except a:

- M will never halt.
- M will never finish reading its input unless its input is ε.

Nondeterminism and Decisions

1. There are context-free languages for which no deterministic PDA exists.
2. It is possible that a PDA may

- not halt,
- not ever finish reading its input.
- require time that is exponential in the length of its input.

3. There is no PDA minimization algorithm. It is undecidable whether a PDA is minimal.

Solutions to the Problem

- For NDFSMs:
- Convert to deterministic, or
- Simulate all paths in parallel.
- For NDPDAs:
- No general solution.
- Formal solutions usually involve changing the grammar.
- Such as Chomsky or Greibach Normal form.
- Practical solutions:
- Preserve the structure of the grammar, but
- Only work on a subset of the CFLs.
- LL(k), LR(k) (compilers course)

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

- Union

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$, and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$

- Concatenation generate languages L_{1} and L_{2}
- Kleene star
- Reverse

Formal details on next slides; we will do them informally

Closure Under Union

$$
\text { Let } \begin{aligned}
G_{1} & =\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right), \text { and } \\
G_{2} & =\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right) .
\end{aligned}
$$

Assume that G_{1} and G_{2} have disjoint sets of nonterminals, not including S.

Let $L=L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
We can show that L is CF by exhibiting a CFG for it:

$$
\begin{aligned}
G= & \left(V_{1} \cup V_{2} \cup\{S\}, \Sigma_{1} \cup \Sigma_{2}\right. \\
& R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1}, S \rightarrow S_{2}\right\}, \\
& S)
\end{aligned}
$$

Closure Under Concatenation

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$, and

$$
G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right) .
$$

Assume that G_{1} and G_{2} have disjoint sets of nonterminals, not including S.

Let $L=L\left(G_{1}\right) L\left(G_{2}\right)$.
We can show that L is CF by exhibiting a CFG for it:

$$
\begin{aligned}
G= & \left(V_{1} \cup V_{2} \cup\{S\}, \Sigma_{1} \cup \Sigma_{2},\right. \\
& R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\},
\end{aligned}
$$

S)

Closure Under Kleene Star

Let $G=\left(V, \Sigma, R, S_{1}\right)$.
Assume that G does not have the nonterminal S.
Let $L=L(G)^{*}$.
We can show that L is CF by exhibiting a CFG for it:

$$
\begin{aligned}
G= & \left(V_{1} \cup\{S\}, \Sigma_{1},\right. \\
& R_{1} \cup\left\{S \rightarrow \varepsilon, S \rightarrow S S_{1}\right\}, \\
& S)
\end{aligned}
$$

Closure Under Reverse

$L^{R}=\left\{w \in \Sigma^{*}: w=x^{R}\right.$ for some $\left.x \in L\right\}$.
Let $G=(V, \Sigma, R, S)$ be in Chomsky normal form.
Every rule in G is of the form $X \rightarrow B C$ or $X \rightarrow a$, where X, B, and C are elements of $V-\Sigma$ and $a \in \Sigma$.

- $X \rightarrow a: L(X)=\{a\}$.
$\{a\}^{R}=\{a\}$.
- $X \rightarrow B C: L(X)=L(B) L(C)$.
$(L(B) L(C))^{R}=L(C)^{R} L(B)^{R}$.
Construct, from G, a new grammar G^{\prime}, such that $L\left(G^{\prime}\right)=L^{R}$: $G^{\prime}=\left(V_{G}, \Sigma_{G}, R^{\prime}, S_{G}\right)$, where R^{\prime} is constructed as follows:
- For every rule in G of the form $X \rightarrow B C$, add to R^{\prime} the rule $X \rightarrow C B$.
- For every rule in G of the form $X \rightarrow a$, add to R^{\prime} the rule $X \rightarrow a$.

