

AL.	$L = \{a^n: n \text{ is prime}\}$
and a co	$L = \{w = a^n: n \text{ is prime}\}$
	Let $w = a^{j}$, where j = the next prime number greater than k : $a \ a \ a \ a \ a \ a \ a \ a \ a \ a \$
	Image: Number Theorem tells us that the primes "spread out", i.e., that the number of primes not exceeding x is asymptotic to x/ln x.

- Given an FSM *M*, is *L*(*M*) empty?
- Given an FSM *M*, is $L(M) = \Sigma_M^*$?

あいたち

- Given an FSM *M*, is *L*(*M*) finite?
- Given an FSM *M*, is *L*(*M*) infinite?
- Given two FSMs M_1 and M_2 , are they equivalent?

• Converting between FSMs and regular expressions:

A SAME AND A

の一般などの

 Given a regular expression α, construct an FSM M such that:

$$L(\alpha) = L(M)$$

• Given an FSM *M*, construct a regular expression α such that:

$$L(\alpha) = L(M)$$

 Algorithms that implement operations on languages defined by regular expressions: any operation that can be performed on languages defined by FSMs can be implemented by converting all regular expressions to equivalent FSMs and then executing the appropriate FSM algorithm.

	When to Stop	
440	May stop when:	
0000	There are nonterminal symbols in the working string but none of them is in a substring that is the left-hand side of any rule in the grammar.	t of
	In this case, we have a blocked or non-terminated derivation but no generated string.	on
	Example:	
	Rules: $S \rightarrow aSb$, $S \rightarrow bTa$, and $S \rightarrow \epsilon$	
	Derivations: $S \Rightarrow aSb \Rightarrow abTab \Rightarrow$ [bloc	ked]

