Poetry The Pumping Lemma

Your
 questions?

Any regular language L has a magic number p And any long-enough word in L has the following property: Amongst its first p symbols is a segment you can find Whose repetition or omission leaves x amongst its kind.

So if you find a language L which fails this acid test,
And some long word you pump becomes distinct from all the rest,
By contradiction you have shown that language L is not A regular guy, resiliant to the damage you have wrought.
But if, upon the other hand, x stays within its L,
Then either L is regular, or else you chose not well.
For w is $x y z$, and y cannot be null,
And y must come before p symbols have been read in full.
As mathematical postscript, an addendum to the wise:
The basic proof we outlined here does certainly generalize.
So there is a pumping lemma for all languages context-free,
Although we do not have the same for those that are r.e.
-- Martin Cohn

[^0]
$L=\left\{a^{n}: n\right.$ is prime $\}$

Let $w=a^{j}$, where j is the smallest prime number $>k+1$.
$y=a^{p}$ for some p.
$\forall q \geq 0\left(a^{|x|+|z|+q|y|}\right.$ must be in $\left.L\right)$. So $|x|+|z|+q \cdot|y|$ must be prime.
But suppose that $q=|x|+|z|$. Then:

$$
\begin{aligned}
|x|+|z|+q \cdot|y| & =|x|+|z|+(|x|+|z|) \cdot y \\
& =(|x|+|z|) \cdot(1+|y|),
\end{aligned}
$$

which is non-prime if both factors are greater than 1 :

$L=\left\{a^{n}: n\right.$ is prime $\}$

Let $w=a^{j}$, where j is the smallest prime number $>k+1$.
$y=a^{p}$ for some p.
$\forall q \geq 0\left(a^{|x|+|z|+q|y|}\right.$ must be in $\left.L\right)$. So $|x|+|z|+q \cdot|y|$ must be prime.
But suppose that $q=|x|+|z|$. Then:

$$
\begin{aligned}
|x|+|z|+q \cdot|y| & =|x|+|z|+(|x|+|z|) \cdot y \\
& =(|x|+|z|) \cdot(1+|y|),
\end{aligned}
$$

which is non-prime if both factors are greater than 1 :

$$
\begin{aligned}
& (|x|+|z|)>1 \text { because }|w|>k+1 \text { and }|y| \leq k . \\
& (1+|y|)>1 \text { because }|y|>0 .
\end{aligned}
$$

$L=\left\{a^{i} b^{j}: i, j \geq 0\right.$ and $\left.i \neq j\right\}$

Try to use the Pumping Theorem by letting $w=a^{k+1} b^{k}$:

$L=\left\{a^{i} b^{j}: i, j \geq 0\right.$ and $\left.i \neq j\right\}$

Try to use the Pumping Theorem by letting $w=\mathrm{a}^{k} \mathrm{~b}^{k+k!}$.
Then $y=a^{p}$ for some nonzero p.
Let $q=(k!/ p)+1$ (i.e., pump in $(k!/ p)$ times).
Note that ($k!/ p$) must be an integer because $p \leq k$.

The number of a's in the new string is $k+(k!/ p) p=k+k!$.

So the new string is $a^{k+k!} \cdot b^{k+k!}$, which has equal numbers of a's and b's and so is not in L.

$L=\left\{a^{i} b^{j}: i, j \geq 0\right.$ and $\left.i \neq j\right\}$

An easier way:

If L is regular then so is $\neg L$. Is it?

$L=\left\{a^{i} b^{j}: i, j \geq 0\right.$ and $\left.i \neq j\right\}$

An easier way:

If L is regular then so is $\neg L$. Is it?

$$
\neg L=\mathrm{A}^{\mathrm{n}} \mathrm{~B}^{\mathrm{n}} \cup\{\text { out of order }\}
$$

If $\neg L$ is regular, then so is $L^{\prime}=\neg L \cap a^{*} b^{*}$
$=$ \qquad

$L=\left\{\mathbf{a}^{\prime} \mathbf{b}^{\prime} \mathbf{c}^{k}: i, j, k \geq 0\right.$ and (if $i=1$ then $j=k$) \}

This is example 8.16 in the textbook. Be sure to read it.

Using the Pumping Theorem Effectively

- To choose w:
- Choose a w that is in the part of L that makes it not regular.
- Choose a w that is only barely in L.
- Choose a w with as homogeneous as possible an initial region of length at least k.
- To choose q :
- Try letting q be either 0 or 2 .
- If that doesn't work, analyze L to see if there is some other specific value that will work.

Regular Languages closed under chop?

> a. If the answer is yes?
> ($x=x_{1} c x_{2}$,
> $x_{1} \in \Sigma_{L}{ }^{*}$,
> $x_{2} \in \Sigma_{L}{ }^{*}$,
> $c \in \Sigma_{L}$,
> $\left|x_{1}\right|=\left|x_{2}\right|$, and
> $\left.\left.w=x_{1} x_{2}\right)\right\}$
> b. If the answer is no?
> Also see Examples
> 8.20(firstchars),
> 8.22(maxstring,
> 8.23(mix)

Is the set of regular languages closed under chop?

\boldsymbol{L}	$\boldsymbol{\operatorname { c h o p } (L)}$
\varnothing	
$\mathrm{a} * \mathrm{~b} *$	
$\mathrm{a} * \mathrm{db}^{*}$	

Decision Procedures

A decision procedure is an algorithm whose result is a Boolean value. It must:

- Halt
- Be correct

Important decision procedures exist for regular languages:

- Given an FSM M and a string s, does M accept s ?
- Given a regular expression α and a string w, does α generate w ?

Membership

We can answer the membership question by running an FSM.

But we must be careful if it's an NDFSM:

Membership

decideFSM(FSMdescription <M>, string w)
If ndfsmsimulate(M, w) accepts then return True else return False.

Recall that ndfsmsimulate takes epsilon-closure at every stage, so there is no danger of getting into an infinite loop.
decideregex(regex α, string w)
From α, use regextofsm to construct an FSM M such that $L(\alpha)=L(M)$.
Return decideFSM(M, w).

```
Emptiness and Finiteness
- Given an FSM \(M\), is \(L(M)\) empty?
- Given an FSM \(M\), is \(L(M)=\Sigma_{M}{ }^{*}\) ?
- Given an FSM \(M\), is \(L(M)\) finite?
- Given an FSM \(M\), is \(L(M)\) infinite?
- Given two FSMs \(M_{1}\) and \(M_{2}\), are they equivalent?
```


Emptiness

- Given an FSM M, is $L(M)$ empty?
- The graph analysis approach:

1. Mark all states that are reachable via some path from the start state of M.
2. If at least one marked state is an accepting state, return False. Else return True.

- The simulation approach:

1. Let $M^{\prime}=n d f s m t o d f s m(M)$.
2. For each string w in Σ^{*} such that $|w|<\left|K_{M}{ }^{\prime}\right|$ do:

Run decideFSM $\left(M^{\prime}, w\right)$.
3. If M^{\prime} accepts at least one such string, return False. Else return True.

- The minimal DFSM approach:

1. Create a minimal DFSM M^{\prime} that is equivalent to M.
2. If M'has exactly one state that is not Accepting, return True.

Else return False.

Totality

- Given an FSM M, is $L(M)=\Sigma_{M}{ }^{*}$?

Finiteness
Given an FSM M, is $L(M)$ finite?

- The graph analysis approach:
- The simulation approach

Equivalence

- Given two FSMs M_{1} and M_{2}, are they equivalent? In other words, is $L\left(M_{1}\right)=L\left(M_{2}\right)$? We can describe two different algorithms for answering this question.

Equivalence

- Given two FSMs M_{1} and M_{2}, are they equivalent? In other words, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?
equalFSMs $s_{1}\left(M_{1}: F S M, M_{2}: F S M\right)=$

1. $M_{1}{ }^{\prime}=$ buildFSMcanonicalform $\left(M_{1}\right)$.
2. $M_{2}{ }^{\prime}=$ buildFSMcanonicalform $\left(M_{2}\right)$.
3. If $M_{1}{ }^{\prime}$ and M_{2} 'are equal, return True, else return False.

Equivalence

- Given two FSMs M_{1} and M_{2}, are they equivalent? In other words, is $L\left(M_{1}\right)=L\left(M_{2}\right)$?

Observe that M_{1} and M_{2} are equivalent iff:

$$
\left(L\left(M_{1}\right)-L\left(M_{2}\right)\right) \cup\left(L\left(M_{2}\right)-L\left(M_{1}\right)\right)=\varnothing .
$$

equalFSMs ${ }_{2}\left(M_{1}:\right.$ FSM, $M_{2}:$ FSM $)=$

1. Construct M_{A} to accept $L\left(M_{1}\right)-L\left(M_{2}\right)$.
2. Construct M_{B} to accept $L\left(M_{2}\right)-L\left(M_{1}\right)$.
3. Construct M_{C} to accept $L\left(M_{A}\right) \cup L\left(M_{B}\right)$.
4. Return emptyFSM($\left.M_{C}\right)$.

Minimality

- Given DFSM M, is M minimal?

Answering Specific Questions

Given two regular expressions α_{1} and α_{2}, is:

$$
\left(L\left(\alpha_{1}\right) \cap L\left(\alpha_{2}\right)\right)-\{\varepsilon\} \neq \varnothing ?
$$

1. From α_{1}, construct an FSM M_{1} such that $L\left(\alpha_{1}\right)=L\left(M_{1}\right)$.
2. From α_{2}, construct an FSM M_{2} such that $L\left(\alpha_{2}\right)=L\left(M_{2}\right)$.
3. Construct M^{\prime} such that $L\left(M^{\prime}\right)=L\left(M_{1}\right) \cap L\left(M_{2}\right)$.
4. Construct M_{ε} such that $L\left(M_{\varepsilon}\right)=\{\varepsilon\}$.
5. Construct $M^{\prime \prime}$ such that $L\left(M^{\prime \prime}\right)=L\left(M^{\prime}\right)-L\left(M_{\varepsilon}\right)$.
6. If $L\left(M^{\prime \prime}\right)$ is empty return False; else return True.
(in the exercises, you'll write an algorithm for step 6)

Summary of Algorithms

- Operate on FSMs without altering the language that is accepted:
- Ndfsmtodfsm
- MinDFSM

Summary of Algorithms

- Compute functions of languages defined as FSMs:
- Given FSMs M_{1} and M_{2}, construct a FSM M_{3} such that $L\left(M_{3}\right)=L\left(M_{2}\right) \cup L\left(M_{1}\right)$.
- Given FSMs M_{1} and M_{2}, construct a new FSM M_{3} such that $L\left(M_{3}\right)=L\left(M_{2}\right) L\left(M_{1}\right)$.
- Given FSM M, construct an FSM M^{*} such that $L\left(M^{*}\right)=(L(M))^{*}$.
- Given a DFSM M, construct an FSM M^{*} such that $L\left(M^{*}\right)=\neg L(M)$.
- Given two FSMs M_{1} and M_{2}, construct an FSM M_{3} such that $L\left(M_{3}\right)=L\left(M_{2}\right) \cap L\left(M_{1}\right)$.
- Given two FSMs M_{1} and M_{2}, construct an FSM M_{3} such that $L\left(M_{3}\right)=L\left(M_{2}\right)-L\left(M_{1}\right)$.
- Given an FSM M, construct an FSM M^{*} such that $L\left(M^{*}\right)=(L(M))^{R}$.
- Given an FSM M, construct an FSM M^{*} that accepts letsub(L(M)).

[^1]
Algorithms, Continued

- Converting between FSMs and regular grammars:
- Given a regular grammar G, construct an FSM M such that:

$$
L(G)=L(M)
$$

- Given an FSM M, construct a regular grammar G such that:

$$
L(G)=L(M) .
$$

Algorithms: Decision Procedures

- Decision procedures that answer questions about languages defined by FSMs:
- Given an FSM M and a string s, decide whether s is accepted by M.
- Given an FSM M, decide whether $L(M)$ is empty.
- Given an FSM M, decide whether $L(M)$ is finite.
- Given two FSMs, M_{1} and M_{2}, decide whether $L\left(M_{1}\right)=L\left(M_{2}\right)$.
- Given an FSM M, is M minimal?
- Decision procedures that answer questions about languages defined by regular expressions: Again, convert the regular expressions to FSMs and apply the FSM algorithms.

Context-Free Grammars

Chapter 11

Languages and Machines

Rewrite Systems and Grammars

A rewrite system (or production system or rule-based system) is:

- a list of rules, and
- an algorithm for applying them.

Each rule has a left-hand side and a right hand side.

Example rules:
$S \rightarrow$ aSb
aS $\rightarrow \varepsilon$
$\mathrm{aSb} \rightarrow \mathrm{bSabSa}$

Simple-rewrite

simple-rewrite(R: rewrite system, w: initial string) =

1. Set working-string to w.
2. Until told by R to halt do:

Match the Ihs of some rule against some part of working-string.

Replace the matched part of working-string with the rhs of the rule that was matched.
3. Return working-string.

A Rewrite System Formalism

A rewrite system formalism specifies:

- The form of the rules
- How simple-rewrite works:
- How to choose rules?
- When to quit?


```
- Expert systems
- Cognitive modeling
- Business practice modeling
- General models of computation
- Grammars
```

Rule Based Systems

Grammars Define Languages

A grammar, G, is a set of rules that are stated in terms of two alphabets:

- a terminal alphabet, Σ, that contains the symbols that make up the strings in $L(G)$, and
-a nonterminal alphabet, the elements of which will function as working symbols that will be used while the grammar is operating. These symbols will disappear by the time the grammar finishes its job and generates a string.

A grammar has a unique start symbol, often called S.

Using a Grammar to Derive a String

Simple-rewrite (G, S) will generate the strings in $L(G)$.

We will use the symbol \Rightarrow to indicate steps in a derivation.

In our example:
[1] $S \rightarrow a S b$
[2] $a S \rightarrow \varepsilon$
A derivation could begin with:

$$
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \ldots
$$

Generating Many Strings

- Multiple rules may match.

Given: $S \rightarrow \mathrm{aSb}, S \rightarrow \mathrm{bSa}$, and $S \rightarrow \varepsilon$
Derivation so far: $S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow$

Three choices at the next step:
$S \Rightarrow$ aSb \Rightarrow aaSbb \Rightarrow aaaSbbb
(using rule 1),
$S \Rightarrow$ aSb \Rightarrow aaSbb \Rightarrow aabSabb (using rule 2),
$S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \mathrm{aabb}$ (using rule 3).

Generating Many Strings

- One rule may match in more than one way.

Given: $S \rightarrow \mathrm{a} T \mathrm{~Tb}, T \rightarrow \mathrm{bTa}$, and $T \rightarrow \varepsilon$
Derivation so far: $S \Rightarrow \mathrm{aTTb} \Rightarrow$
Two choices at the next step:
$\mathrm{S} \Rightarrow \mathrm{a} \underline{I T b} \Rightarrow \mathrm{abTaTb} \Rightarrow$
$S \Rightarrow \mathrm{aTI} \mathrm{b} \Rightarrow \mathrm{aTb} T \mathrm{ab} \Rightarrow$

 When to Stop

May stop when:

1. The working string no longer contains any nonterminal symbols (including, when it is ε).

In this case, we say that the working string is generated by the grammar.

Example:

$$
S \Rightarrow \mathrm{aSb} \Rightarrow \mathrm{aaSbb} \Rightarrow \mathrm{aabb}
$$

ar

May stop when:
2. There are nonterminal symbols in the working string but none of them is in a substring that is the left-hand side of any rule in the grammar.

In this case, we have a blocked or non-terminated derivation but no generated string.

Example:

Rules: $S \rightarrow \mathrm{aSb}, S \rightarrow \mathrm{bTa}$, and $S \rightarrow \varepsilon$

Derivations: $S \Rightarrow a S b \Rightarrow a b T a b \Rightarrow$
[blocked]

When to Stop

It is possible that neither (1) nor (2) is achieved.
Example:
G contains only the rules $S \rightarrow B$ and $B \rightarrow \mathrm{bB}$, with S the start symbol.

Then all derivations proceed as:

$$
S \Rightarrow B \mathrm{a} \Rightarrow \mathrm{bBa} \Rightarrow \mathrm{bbBa} \Rightarrow \mathrm{bbbBa} \Rightarrow \mathrm{bbbbBa} \Rightarrow \ldots
$$

Context-Free Grammars

No restrictions on the form of the right hand sides.
$S \rightarrow a b D e F G a b$
But require single non-terminal on left hand side.
$S \rightarrow$
but not \quad ASB \rightarrow

Balanced Parentheses language

 $a^{m} b^{n}$: $m>=n$
Context-Free Grammars

A context-free grammar G is a quadruple, (V, Σ, R, S), where:

- V is the rule alphabet, which contains nonterminals and terminals.
- Σ (the set of terminals) is a subset of V,
- R (the set of rules) is a finite subset of $(V-\Sigma) \times V^{*}$,
- S (the start symbol) is an element of $V-\Sigma$.

Example:
$(\{S, a, b\}, \quad\{a, b\}, \quad\{S \rightarrow a S b, S \rightarrow \varepsilon\}, S)$

Rules are also known as productions.

[^0]: ## $L=\left\{a^{n}: n\right.$ is prime $\}$

 $L=\left\{w=a^{n}: n\right.$ is prime $\}$
 Let $w=a^{j}$, where $j=$ the next prime number greater than k :

 $$
 \frac{\mathrm{a} a \mathrm{a} \mathrm{a} a \mathrm{a} \mathrm{a}}{x} \frac{\mathrm{a} a \mathrm{a}}{y} \frac{\mathrm{a} a \mathrm{a}}{z}
 $$

 $|x|+|z|$ may be prime.
 $|x|+|y|+|z|$ is prime.
 $|x|+2|y|+|z|$ may be prime.
 $|x|+3|y|+|z|$ may be prime, and so forth.

 But the Prime Number Theorem tells us that the primes "spread out", i.e., that the number of primes not exceeding x is asymptotic to $x / \ln x$.

[^1]: Algorithms, Continued

 - Converting between FSMs and regular expressions:
 - Given a regular expression α, construct an FSM M such that:

 $$
 L(\alpha)=L(M)
 $$

 - Given an FSM M, construct a regular expression α such that:

 $$
 L(\alpha)=L(M)
 $$

 - Algorithms that implement operations on languages defined by regular expressions: any operation that can be performed on languages defined by FSMs can be implemented by converting all regular expressions to equivalent FSMs and then executing the appropriate FSM algorithm.

