

Recap: Kleene's Theorem

Finite state machines and regular expressions define the same class of languages.

To prove this, we showed:

Theorem: Any language that can be defined by a regular expression can be accepted by some FSM and so is regular. Done Day 11.

Theorem: Every regular language (i.e., every language that can be accepted by some DFSM) can be defined with a regular expression. Done Day 12

Recap: DFSM \rightarrow Reg. Exp.

 R_{iik} is the set of all strings that take M from q_i to q_i without passing through any intermediate states numbered higher than k.

It can be computed recursively:

```
ON THE REAL
    Base cases (k = 0):
```

```
-\text{ If } i \neq j, \text{ } \text{R}_{ij0} \text{ = } \{ a \in \Sigma : \delta(\textbf{q}_i, \text{ } a) \text{ = } \textbf{q}_j \}
```

```
- If i = j, \mathsf{R}_{ii0} = {a \in \Sigma : \delta(\mathsf{q}_i, \mathsf{a}) = \mathsf{q}_i} \cup {\varepsilon}
```

```
Recursive case (k > 0):
```

 R_{ijk} is $R_{ij(k-1)} \cup R_{ik(k-1)}(R_{kk(k-1)})^* R_{kj(k-1)}$

- We showed by induction that each R_{iik} is
- defined by some regular expression r_{iik}.

	An Ex	i _{k(k-1)} (r _{kk(k-1)})*r _{kj(k-1)})					
0.000 m	Start $\longrightarrow (q_1) \xrightarrow{0} (q_2) \xrightarrow{1} (q_2) \xrightarrow{1} (q_3) (q_3) (q_1) \xrightarrow{0} (q_1) (q_2) (q_3) $						
		k=0	k=1	k=2			
	r _{11k}	3	3	(00)*			
	r _{12k}	0	0	0(00)*			
	r _{13k}	1	1	0*1			
	r _{21k}	0	0	0(00)*			
	r _{22k}	3	$\epsilon \cup 00$	(00)*			
	r _{23k}	1	$1 \cup 01$	0*1			
	r _{31k}	Ø	Ø	(0 \cup 1)(00)*0			
	r _{32k}	$0 \cup 1$	$0 \cup 1$	(0 \cup 1)(00)*			
	r _{33k}	3	3	$\epsilon \cup (0 \cup 1)0^*1$			

	de. Keu	ular Expressions in Perl
Syntax	Name	Description
abc	Concatenation	Matches a, then b, then c, where a, b, and c are any regexs
a b c	Union (Or)	Matches a or b or c, where a, b, and c are any regexs
a*	Kleene star	Matches 0 or more a's, where a is any regex
<i>a</i> +	At least one	Matches 1 or more a's, where a is any regex
a?		Matches 0 or 1 a's, where a is any regex
$a\{n, m\}$	Replication	Matches at least n but no more than m a's, where a is any regex
a*?	Parsimonious	Turns off greedy matching so the shortest match is selected
a+?	"	"
	Wild card	Matches any character except newline
^	Left anchor	Anchors the match to the beginning of a line or string
\$	Right anchor	Anchors the match to the end of a line or string
[a-z]		Assuming a collating sequence, matches any single character in range
[^a-z]		Assuming a collating sequence, matches any single character not in range
\d	Digit	Matches any single digit, i.e., string in [0-9]
\D	Nondigit	Matches any single nondigit character, i.e., [^0-9]
\w	Alphanumeric	Matches any single "word" character, i.e., [a-zA-Z0-9]
\W	Nonalphanumeric	Matches any character in [^a-zA-Z0-9]
\s	White space	Matches any character in [space, tab, newline, etc.]

	i veania	
Current and		Durchter
Syntax	Name Nonwhite energy	Description Matches any character not matched by log
20	Norwline Newline	Matches any character not matched by (5
111	Boturn	Matches return
14	Tab	Matches teh
10	Formfood	Matches familied
\b	Backenace	Matches hackspace inside []
\b	Word boundary	Matches a word boundary outside []
\B	Nonword boundary	Matches a non-word boundary
\0	Null	Matches a null character
\nnn	Octal	Matches an ASCII character with octal value nnn
\xnn	Hexadecimal	Matches an ASCII character with hexadecimal value nn
\cX	Control	Matches an ASCII control character
\char	Quote	Matches char; used to quote symbols such as . and \
(a)	Store	Matches a, where a is any regex, and stores the matched string in the next variable
\1	Variable	Matches whatever the first parenthesized expression matched
\2		Matches whatever the second parenthesized expression matched
		For all remaining variables

4

	A Complete Proof					
	If <i>L</i> were regular, then there would exist some <i>k</i> such that any string <i>w</i> where $ w \ge k$ must satisfy the conditions of the theorem. Let $w = a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$. Since $ w \ge k$, <i>w</i> must satisfy the conditions of the pumping theorem. So, for some <i>x</i> , <i>y</i> , and <i>z</i> , $w = xyz$, $ xy \le k$, $y \ne \varepsilon$, and $\forall q \ge 0$, $xy^q z$ is in <i>L</i> . We show that no such <i>x</i> , <i>y</i> , and <i>z</i> exist. There are 3 cases for where <i>y</i> could occur: We divide <i>w</i> into two regions:					
	aaaaaaaaaaa bbbbbbbbbbb 1 2 So y can fall in: • (1): $y = a^p$ for some p. Since $y \neq \varepsilon$, p must be greater than 0. Let $q = 2$. The resulting string is $a^{k+p}b^k$. But this string is not in L since it has					
	 (2): y = b^p for some p. Since y ≠ ε, p must be greater than 0. Let q = 2. The resulting string is a^kb^{k+p}. But this string is not in L, since it has more b's than a's. (1, 2): y = a^pb^r for some non-zero p and r. Let q = 2. The resulting string will have interleaved a's and b's, and so is not in L. 					
	There exists one long string in <i>L</i> for which no pumpable <i>x</i> , <i>y</i> , <i>z</i> exist. So <i>L</i> is not regular.					

