
3/23/2018

1

MA/CSSE 474
Theory of Computation

DFSM to RE

Exam discussion

3/23/2018

2

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW6 problems
• Anything else

Recap: Kleene’s Theorem
Finite state machines and regular expressions define
the same class of languages.

To prove this, we must show:

Theorem: Any language that can be defined by a
regular expression can be accepted by some FSM
and so is regular. Done last time.

Theorem: Every regular language (i.e., every language
that can be accepted by some DFSM) can be
defined with a regular expression.

3/23/2018

3

For Every FSM There is a
Corresponding Regular Expression

• We’ll show this by construction.
The construction is different than the textbook's.

• Let M = ({q1, …, qn}, , , q1, A) be a DFSM.
Define Rijk to be the set of all strings x * such that

• (qi,x) |-M (qj,), and

• if (qi,y) |-M (qℓ,), for any prefix y of x
(except y= and y=x), then ℓ k

• That is, Rijk is the set of all strings that take us from qi to
qj without passing through any intermediate states
numbered higher than k.
• In this case, "passing through" means both entering

and leaving.
• Note that either i or j (or both) may be greater than k.

*

*

Example: Rijk

• Rijk is the set of all strings that take us from qi to qj without
passing through any intermediate states numbered
higher than k.
• In this case, "passing through" means both entering

and leaving.
• Note that either i or j (or both) may be greater than k.
R110

R111

R112

R131

R132

R330

R333

R142

R143

3/23/2018

4

DFSMReg. Exp. construction
• Rijk is the set of all strings that take M from qi

to qj without passing through any
intermediate states numbered higher than k.

• Examples: Rij0 Rijn

• We will show that for all i,j{1, …, n} and
all k {0, …, n}, Rijk there is a regular
expression rijk that defines Rijk.

• Also note that L(M) is the union of R1jn over
all qj in A.
– We know that the union of languages defined by

reg. exps. is defined by a reg. exp.

DFSMReg. Exp. continued
• Rijk is the set of all strings that take M from qi to qj without

passing through any intermediate states numbered higher
than k.

It can be computed recursively:

• Base cases (k = 0):
– If i j, Rij0 = {a : (qi, a) = qj}

– If i = j, Rii0 = {a : (qi, a) = qi} {}

• Recursive case (k > 0):
Rijk is Rij(k-1) Rik(k-1)(Rkk(k-1))*Rkj(k-1)

• We show by induction that each Rijk is
defined by some regular expression rijk.

3/23/2018

5

DFSMReg. Exp. Proof pt. 1

• Base case definition (k = 0):
– If i j, Rij0 = {a : (qi, a) = qj}
– If i = j, Rii0 = {a : (qi, a) = qi} {}

• Base case proof:
Rij0 is a finite set of symbols, each of which is either
or a single symbol from .
So Rij0 can be defined by the reg. exp.
rij0 = a1a2…ap (or a1a2…ap if i=j),
where {a1, a2, …,ap} is {a : (qi, a) = qj.

• Note that if M has no direct transitions from qi to qj,
then rij0 is (it is if i=j and no "loop" on that state).

DFSMReg. Exp. Proof pt. 2
• Recursive definition (k > 0):

Rijk is Rij(k-1) Rik(k-1)(Rkk(k-1))*Rkj(k-1)

• Induction hypothesis: For each ℓ and ,
there is a regular expression rℓ k-1 such that
L(rℓ k-1))= Rℓ k-1).

• Induction step. By the recursive parts of the
definition of regular expressions and the
languages they define, and by the above
recursive definition of Rijk :
Rijk = L(rij(k-1) rik(k-1)(rkk(k-1))*rkj(k-1))

3/23/2018

6

DFAReg. Exp. Proof pt. 3
• We showed by induction that each Rijk is

defined by some regular expression rijk.

• In particular, for all qjA, there is a regular
expression r1jn that defines R1jn.

• Then L(M) = L(r1j1n … r1jpn),

where A = {qj1
, …, qjp

}

• The union of finitely many regular
expressions is a regular expression.

An Example
Start q1 q2 q3

0

0
1

1

0,1

k=0 k=1 k=2
r11k (00)*

r12k 0 0 0(00)*

r13k 1 1 0*1

r21k 0 0 0(00)*

r22k 00 (00)*

r23k 1 1 01 0*1

r31k (0 1)(00)*0

r32k 0 1 0 1 (0 1)(00)*

r33k (0 1)0*1

