MA/CSSE 474

Theory of Computation

Minimizing DFSMs

Your Questions?

- Previous class days' material
- Reading Assignments

Even in the relatively narrow area of Computer science, the term "Heap" is ambiguous. From Wikipedia:

- HW4 or HW5 problems
- Tuesday's Exam
- Anything else

Computer science

- Heap (data structure), a data structure commonly used to implement a priority queue
- Heap (programming) (or free store), an area of memory used for dynamic memory allocation

For practice later: A Simple Example of $\approx\llcorner$

```
\Sigma={a,b}
L={w\in\mp@subsup{\Sigma}{}{*}:|w| is even }
```

ε	bb	aabb
a	aba	bbaa
b	aab	aabaa
aa	bbb	
	baa	

The equivalence classes of \approx :

Recall that $x \approx_{L} y \quad$ iff $\quad \forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$.

Another Example of \approx_{L}

More Than One Class Can Contain Strings in L

$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$L=\left\{w \in \Sigma^{*}:\right.$ no two adjacent characters are the same $\}$
The equivalence classes of \approx_{L} :
[1] [$]$
[2] [a, aba, ababa, ...]
[3] [b, ab, bab, abab, ...]
[4] [aa, abaa, ababb...]

Recall that $x \approx_{L} y \quad$ iff $\quad \forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$.

One More Example of \approx

$\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$\mathrm{L}=\mathrm{A}^{n} \mathrm{~B}^{n}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n}: n \geq 0\right\}$

ε	aa	aaaa
a	aba	aaaaa
b	aaa	

The equivalence classes of \approx_{L} :

Recall that $x \approx_{L} y \quad$ iff $\quad \forall z \in \Sigma^{*}(x z \in L \leftrightarrow y z \in L)$.

Important results

(we may prove some of them later)
Let M be a DFSM that accepts the regular language L. The number of states in M is greater than or equal to the number of equivalence classes of $\approx\llcorner$.
Theorem: Let L be a regular language over some alphabet Σ. Then there is a DFSM M with $L(M)=L$ and that has precisely n states where n is the number of equivalence classes of \approx_{L}. Any other FSM that accepts L must either have more states than M or it must be equivalent to M except for state names.

[^0]
Example

$\Sigma=\{a, b\}$
$L=\left\{w \in \Sigma^{*}:\right.$ no two adjacent characters are the same $\}$
The equivalence classes of \approx_{L} :
1: [ε]
2: [a, ba, aba, baba, ababa, ...]
3: [b, ab, bab, abab, ...]
4: [bb, aa, bba, bbb, ...]
ε
$(\mathrm{b} \cup \varepsilon)(\mathrm{ab})^{*} \mathrm{a}$
$(a \cup \varepsilon)(b a)^{*} b$
the rest

- Equivalence classes become states
- Start state is [ε]
- Accepting states are all equivalence classes in L
- $\delta([x], a)=[x a]$

The Myhill-Nerode Theorem

Theorem: A language is regular iff the number of equivalence classes of \approx_{L} is finite.

Proof: Show the two directions of the implication:
L regular \rightarrow the number of equivalence classes of \approx_{L} is finite: If L is regular, then

The number of equivalence classes of \approx_{L} is finite $\rightarrow L$ regular: If the cardinality of \approx_{L} is finite, then

So Where Do We Stand?

1. We know that for any regular language L there exists a minimal accepting machine M_{L}.
2. We know that $|K|$ of M_{L} equals the number of equivalence classes of \approx.
3. We know how to construct M_{L} from $\approx\llcorner$.
4. We know that M_{L} is unique up to the naming of its states.

But is this good enough?
Consider:

Minimizing an Existing DFSM (Without Knowing \approx L)

Two approaches:

1. Begin with M and collapse redundant states, getting rid of one at a time until the resulting machine is minimal.
2. Begin by overclustering the states of M into just two groups, accepting and nonaccepting. Then iteratively split those groups apart until all the distinguishable states have been distinguished.

The Overclustering Approach

We need a definition for "equivalent", i.e., mergeable states.

Define $p \equiv q$ iff for every string $w \in \Sigma^{*}$, either w takes M to an accepting state from both q and p or it takes M to a rejecting state from both q and p.

Is \equiv an equivalence relation?

Construct \equiv as the Limit of a Sequence of Approximating Equivalence Relations $\equiv{ }^{n}$

(Where n is the length of the input strings that have been considered so far)

Consider input strings, starting with ε, and increasing in length by 1 at each iteration. Start by overclustering the states. Then split them apart as it becomes apparent (with longer and longer strings) that they are not equivalent

Constructing \equiv^{n}

- $p \equiv^{0} q$ iff they behave equivalently when they read ε. In other words, if they are both accepting or both rejecting states.
- $p \equiv^{1} q$ iff $p \equiv^{0} q$ and they behave equivalently when they read any string of length 1 , i.e., if any single character sends both of them to an accepting state or both of them to a rejecting state. Note that this is equivalent to saying that any single character sends them to states that are $\equiv 0$ to each other.
- $p \equiv^{2} q$ iff $p \equiv^{1} q$ and they behave equivalently when they read any string of length 2 , which they will do if, when they read the first character they land in states that are \equiv^{1} to each other. By the definition of \equiv^{1}, they will then yield the same outcome when they read the single remaining character.
- And so forth.

Constructing \equiv, Continued

More precisely, $\forall p, q \in K$ and any $n \geq 1, q \equiv^{n} p$ iff:

1. $q \equiv^{n-1} p$, and
2. $\forall a \in \Sigma\left(\delta(p, a) \equiv^{n-1} \delta(q, a)\right)$

An Example

$\Sigma=\{a, b\}$

Equivalence classes:
$\equiv^{0}=$
$\equiv^{1}=$
$\equiv^{2}=$

MinDFSM

$\operatorname{MinDFSM}(M$: DFSM $)=$

1. classes := $\{A, K-A\}$;
2. Repeat until no changes are made
2.1. newclasses := \varnothing;
2.2. For each equivalence class e in classes, if e contains more than one state do

For each state q in e do
For each character c in Σ do
Determine which element of classes q goes to if c is read
If there are any two states p and q that need to be split, split them. Create as many new equivalence classes as are necessary. Insert those classes into newclasses.
If there are no states whose behavior differs, no splitting is necessary. Insert e into newclasses.
2.3. classes := newclasses;
3. Return $M^{*}=\left(\right.$ classes, $\Sigma, \delta,\left[s_{M}\right],\left\{\left[q\right.\right.$: the elements of q are in $\left.\left.A_{M}\right]\right\}$), where $\delta_{M^{*}}$ is constructed as follows:
if $\delta_{M}(q, c)=p$, then $\delta_{M^{*}}([q], c)=[p]$

Summary

- Given any regular language L, there exists a minimal DFSM M that accepts L.
$-M$ is unique up to the naming of its states.
- Given any DFSM M, there exists an algorithm minDFSM that constructs a minimal DFSM that also accepts $L(M)$.

Canonical Forms

A canonical form for some set of objects C assigns exactly one representative to each class of "equivalent" objects in C.

Further, each such representative is distinct, so two objects in C share the same representation iff they are "equivalent" in the sense for which we define the form.

In order for a canonical form to be useful, there must be a procedure which, given an object from the set, computes its canonical form.

A Canonical Form for FSMs

buildFSMcanonicalform(M: FSM) =

1. $M^{\prime}=n d f s m t o d f s m(M)$.
2. $M^{*}=\operatorname{minDFSM}\left(M^{\prime}\right)$.
3. Create a unique assignment of names to the states of M^{*}.
4. Return M^{*}.

Given two FSMs M_{1} and M_{2} :
The simple algorithm for unique name assignment is in the textbook; we will illustrate it here by
buildFSMcanonicalform $\left(M_{1}\right)$ doing an example.
buildFSMcanonicalform $\left(M_{2}\right)$
iff $L\left(M_{1}\right)=L\left(M_{2}\right)$.

[^0]:

 ## Construct DFSM from \approx_{L}

 $M=(K, \Sigma, \delta, s, A)$, where:

 - K contains one state for each equivalence class of \approx_{L}.
 - $s=[\varepsilon]$, the equivalence class of ε under \approx_{L}.
 - $A=\{[x]: x \in L\}$. [Aside: what is the union of all of these classes?]
 - $\delta([x], a)=[x a]$. (if M is in state containing x, then, after reading the next symbol, a, it goes to state containing $x a$). We can show (but we won't right now):
 - K is finite.
 - δ is a well-defined function*. i.e. $\forall x, y \in \Sigma^{*}, a \in \Sigma([x]=[y] \rightarrow[x a]=[y a])$ - $L=L(M)$.

