

Mostly very quick.
Some should be review of previous courses, and some others you should have gotten for Reading Quiz 2.

Ask questions if there are things I list here that you are not sure about.

## Relations on Strings:

Substring, proper substring
Every string is a substring of itself.
$\varepsilon$ is a substring of every string.
prefix, proper prefix
Every string is a prefix of itself.
$\varepsilon$ is a prefix of every string.
$s$ is a suffix, proper suffix, self, $\varepsilon$

## Defining a Language

A language is a (finite or infinite) set of strings over a finite alphabet $\Sigma$. Examples for $\Sigma=\{a, b\}$

1. $L=\left\{x \in\{a, b\}^{*}:\right.$ all a's precede all $b$ 's $\}$
$\varepsilon$, a a a a a abbb, and bb are in $L$. aba, ba, and abc are not in $L$.
2. $L=\left\{x: \exists u \in\{a, b\}^{*}: x=u a\right\}$

Simple English description:
3. $L=\left\{x \# y: x, y \in\{0,1,2,3,4,5,6,7,8,9\}^{*}\right.$ and, when $x$ and $y$ are viewed as the decimal representations of natural numbers, $\operatorname{square}(x)=y\}$.
Examples (in L or not?):
3\#9, 12\#144, 3\#8, 12, 12\#12\#12, \#
4. $L=\left\{a^{n}: n \geq 0\right\}$ simpler description of $L$ ?
5. $A^{n} B^{n}=\left\{a^{k} b^{k}: k \geq 0\right\}$
6. $L=\varnothing=\{ \}$
7. $L=\{\varepsilon\}$

## Natural Languages are Tricky

$L=\{w: w$ is a sentence in English $\}$.

## Examples:

Kerry hit the ball.
Colorless green ideas sleep furiously.
The window needs fixed.
Ball the Stacy hit blue.

## A Halting Problem Language

$L=\{w: w$ is a Java program that, when given any finite input string, is guaranteed to halt\}.

- Is this language well specified?
- Can we decide which strings $L$ contains?


## Languages and Prefixes

What are the following languages?
$L=\left\{w \in\{a, b\}^{*}\right.$ : no prefix of $w$ contains $\left.b\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of $w$ starts with $\left.a\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ every prefix of $w$ starts with $\left.a\right\}$

## Concatenation of Languages

If $L_{1}$ and $L_{2}$ are languages over $\Sigma$ :
$L_{1} L_{2}=\left\{w \in \Sigma^{*}: \exists s \in L_{1}\left(\exists t \in L_{2}(w=s t)\right)\right\}$
Alternate definition:
$L_{1} L_{2}=\{s t: s \in L 1 \wedge t \in L 2\}$
Simpler than the first definition,
$L_{1}=\{a, a \mathrm{a}\}$ but the first one conveys the idea more precisely.
$L_{2}=\{a, c, \varepsilon\}$
$L_{1} L_{2}=$

## Operations on Languages

## Is this the same as $\left\{w^{3}: w \in L\right\}$

## Concatenation and Reverse of Languages

Theorem: $\left(L_{1} L_{2}\right)^{R}=L_{2}{ }^{R} L_{1}{ }^{R}$.
Proof:
$\forall x\left(\forall y\left((x y)^{R}=y^{R} x^{R}\right)\right)$ Theorem 2.1 we proved last time
$\left(L_{1} L_{2}\right)^{R}=\left\{(x y)^{R}: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\} \quad$ Definition of concatenation of languages
$=\left\{y^{R} x^{R}: x \in L_{1}\right.$ and $\left.y \in L_{2}\right\} \quad$ Thm 2.1
$=L_{2}{ }^{R} L_{1}{ }^{R} \quad$ Definition of concatenation of languages

## Sets and Relations

## Sets of Sets

- The power set of $S$ is the set of all subsets of $S$.

Let $S=\{1,2,3\}$. Then:

$$
\mathscr{T}(S)=\{\varnothing,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

- $\Pi \subseteq P(S)$ is a partition of a set $S$ iff:
- Every element of $\Pi$ is nonempty,
- Every pair of elements of $\Pi$ is disjoint, and
- the union of all the elements of $\Pi$ equals $S$.

Some partitions of $=\{1,2,3\}$ :
$\{\{1\},\{2,3\}\}$ or $\{\{1,3\},\{2\}\}$ or $\{\{1,2,3\}\}$.
How many different partitions of S?

## Closure

- A set $S$ is closed under binary operation op iff $\forall x, y \in S(x$ op $y \in S)$,
closed under unary if $S$ is not closed under unary function function f iff f , a closure of S is a set $\mathrm{S}^{\prime}$ such that $\forall x \in \mathrm{~S}(\mathrm{f}(\mathrm{x}) \in \mathrm{S})$
a) $S$ is a subset of $S^{\prime}$
b) $S^{\prime}$ is closed under $f$
c) No proper subset of $S^{\prime}$ contains $S$ and is closed under $f$
- Examples
- $\mathbb{N}+$ (the set of all positive integers) is closed under addition and multiplication but not negation, subtraction, or division.
- What is the closure of $\mathbb{N}+$ under subtraction? Under division?
- The set of all finite sets is closed under union and intersection. Closed under infinite union?


## Equivalence Relations

A relation on a set $A$ is any set of ordered pairs of elements of $A$.

A relation $R \subseteq A \times A$ is an equivalence relation iff it is:
-reflexive,
-symmetric, and
-transitive.
Examples of equivalence relations:
-Equality
-Lives-at-Same-Address-As
-Same-Length-As

Show that $\equiv_{3}$ is an
equivalence relation
-Contains the same number of a's as

## Cardinality of a set.

The cardinality of every set we will consider is one of the following :

- a specific natural number (if $S$ is finite),
- "countably infinite" (if $S$ has the same number of elements as there are integers), or
- "uncountably infinite" (if $S$ has more elements than there are integers).


## Functions on Languages

Functions whose domains and ranges are languages
$\operatorname{maxstring}(L)=\left\{w \in L: \forall z \in \Sigma^{*}(z \neq \varepsilon \rightarrow w z \notin L)\right\}$.
Examples:

- maxstring ( $\left.\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}\right)$
- maxstring( $\{\mathrm{a}\}^{*}$ )


## Exercise for later:

What language is maxstring(\{bna: $n \geq 0\})$ ?

Let INF be the set of all infinite languages.
Let FIN be the set of all finite languages.
Are the language classes FIN and INF closed under maxstring?

## Functions on Languages

```
chop(L) =
    {w: \existsx\inL (x= \mp@subsup{x}{1}{}C\mp@subsup{x}{2}{},\mp@subsup{x}{1}{}\in\mp@subsup{\Sigma}{L}{*}\mp@subsup{}{}{*},\mp@subsup{x}{2}{}\in\mp@subsup{\Sigma}{L}{*},c\in\mp@subsup{\Sigma}{L}{},
```



What is chop $\left(\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}\right)$ ?

What is chop $\left(\mathrm{A}^{\mathrm{n}} \mathrm{B}^{n} \mathrm{C}^{\mathrm{n}}\right)$ ?

Are FIN and INF closed under chop?

## Functions on Languages

```
firstchars( \(L\) ) =
    \(\left\{w: \exists y \in L\left(y=c x \wedge c \in \Sigma_{L} \wedge x \in \Sigma_{L}{ }^{*} \wedge w \in\{c\}^{*}\right)\right\}\).
```

What is firstchars $\left(\mathrm{A}^{\mathrm{n}} \mathrm{B}^{\mathrm{n}}\right)$ ?

What is firstchars(\{a, b\}*)?

Are FIN and INF closed under firstchars?

## Look at the Reading Quiz 1 comments from the Day 2 slides.

