20.1
(\#3)

1. Show that the set D (the decidable languages) is closed under:
a. Union
b. Concatenation
c. Kleene star
d. Reverse
e. Intersection
2. Show that the set SD (the semidecidable languages) is closed under:
a. Union
b. Concatenation
c. Kleene star
d. Reverse
e. Intersection
3. Let $L_{1}, L_{2}, \ldots, L_{k}$ be a collection of languages over some alphabet Σ such that:

- For all $i \neq j, L_{i} \cap L_{j}=\varnothing$.
- $L_{1} \cup L_{2} \cup \ldots \cup L_{k}=\Sigma^{*}$.
- $\forall i\left(L_{i}\right.$ is in SD).

Prove that each of the languages L_{1} through L_{k} is in D.
4. If L_{1} and L_{3} are in D and $L_{1} \subseteq L_{2} \subseteq L_{3}$, what can we say about whether L_{2} is in D ?
5. Let L_{1} and L_{2} be any two decidable languages. State and prove your answer to each of the following questions:
a. Is it necessarily true that $L_{1}-L_{2}$ is decidable?
b. Is it possible that $L_{1} \cup L_{2}$ is regular?
6. Let L_{1} and L_{2} be any two undecidable languages. State and prove your answer to each of the following questions:
a. Is it possible that $L_{1}-L_{2}$ is regular?
b. Is it possible that $L_{1} \cup L_{2}$ is in D ?
7. Let M be a Turing machine that lexicographically enumerates the language L. Prove that there exists a Turing machine M^{\prime} that decides L^{R}.
8. Construct a standard one-tape Turing machine M to enumerate the language:
$\{w: w$ is the binary encoding of a positive integer that is divisible by 3$\}$.
Assume that M starts with its tape equal to Also assume the existence of the printing subroutine P, defined in Section 20.5.1. As an example of how to use P, consider the following machine, which enumerates L^{\prime}, where $L^{\prime}=\{w: w$ is the unary encoding of an even number $\}:$

$$
\begin{aligned}
& \\
&> P R 1 R 1
\end{aligned}
$$

11) Recall the function $m i x$, defined in Example 8.23. Neither the regular languages nor the context-free languages are closed under $m \dot{x}$. Are the decidable languages closed under $m i x$? Prove your answer.
12) Let $\Sigma=\{a, b\}$. Consider the set of all languages over Σ that contain only even length strings.
a) How many such languages are there?
b) How many of them are semidecidable?
13. Show that every infinite semidecidable language has a subset that is not decidable.
