474 HW 16 problems (highlighted problems are the ones to turn in)

20.1

- (#3)
- 20.2
- (#4)
- 20.3
- (#3) 9
- <mark>20.4</mark>
- (#4) <mark>6</mark>
- 20.5
- (#7)
- 20.6
- (#8)
- 20.7
- (#7)
- 20.8
- (#8) 9

- 20.11 (#9) 9
- 10.12
- (#10) <mark>6</mark>
- 20.13 (#11) **9**

- 1. Show that the set D (the decidable languages) is closed under:
 - a. Union
 - b. Concatenation
 - c. Kleene star
 - d. Reverse
 - e. Intersection
- 2. Show that the set SD (the semidecidable languages) is closed under:
 - a. Union
 - b. Concatenation
 - c. Kleene star
 - d. Reverse
 - e. Intersection
- 3. Let L_1, L_2, \ldots, L_k be a collection of languages over some alphabet Σ such that:
 - For all $i \neq j, L_i \cap L_j = \emptyset$.
 - $L_1 \cup L_2 \cup \ldots \cup L_k = \Sigma^*$.
 - $\forall i \ (L_i \text{ is in SD}).$

Prove that each of the languages L_1 through L_k is in D.

- **4.** If L_1 and L_3 are in D and $L_1 \subseteq L_2 \subseteq L_3$, what can we say about whether L_2 is in D?
- 5. Let L_1 and L_2 be any two decidable languages. State and prove your answer to each of the following questions:
 - a. Is it necessarily true that $L_1 L_2$ is decidable?
 - **b.** Is it possible that $L_1 \cup L_2$ is regular?
- **6.** Let L_1 and L_2 be any two undecidable languages. State and prove your answer to each of the following questions:
 - a. Is it possible that $L_1 L_2$ is regular?
 - **b.** Is it possible that $L_1 \cup L_2$ is in D?
- 7. Let M be a Turing machine that lexicographically enumerates the language L. Prove that there exists a Turing machine M' that decides $L^{\mathbb{R}}$.
- 8. Construct a standard one-tape Turing machine M to enumerate the language:

 $\{w: w \text{ is the binary encoding of a positive integer that is divisible by 3}\}.$

Assume that M starts with its tape equal to \square . Also assume the existence of the printing subroutine P, defined in Section 20.5.1. As an example of how to use P, consider the following machine, which enumerates L', where $L' = \{w : w \text{ is the unary encoding of an even number}\}$:

- 11) Recall the function mix, defined in Example 8.23. Neither the regular languages nor the context-free languages are closed under mix. Are the decidable languages closed under mix? Prove your answer.
- 12) Let $\Sigma = \{a, b\}$. Consider the set of all languages over Σ that contain only even length strings.
 - a) How many such languages are there?
 - b) How many of them are semidecidable?
- 13. Show that every infinite semidecidable language has a subset that is not decidable.