

1. Consider the language $L=\{\langle M\rangle$: Turing machine M accepts at least two strings $\}$.
a. Describe in clear English a Turing machine M that semidecides L.
b. Now change the definition of L just a bit. Consider:
$L^{\prime}=\langle<M\rangle$:Turing machine M accepts exactly 2 strings \rangle.
Can you tweak the Turing machine you described in part a to semidecide L^{\prime} ?
2. Consider the language $L=\{\langle M\rangle$: Turing machine M accepts the binary encodings of the first three prime numbers $\}$.
a. Describe in clear English a Turing machine M that semidecides L.
b. Suppose (contrary to fact, as established by Theorem 19.2) that there were a Turing machine Oracle that decided H. Using it, describe in clear English a Turing machine M that decides L.
