474 HW 11 problems (highlighted problems are the ones to turn in)

	474 HW 11 problems (highlighted problems are the ones to turn in)	11.12b Note that there
11.11 (#1) 11.12b (#2) <mark>6+6</mark> 11.13a	 11. In I.3.1, we present a simplified grammar for URIs (Uniform Resource Identifiers), the names that we use to refer to objects on the Web. a. Using that grammar, show a parse tree for: https://www.mystuff.wow/widgets/fradgit#sword b. Write a regular expression that is equivalent to the grammar that we present. 12. Prove that each of the following grammars is correct: a. The grammar, shown in Example 11.3, for the language PalEven. b. The grammar, shown in Example 11.1, for the language Bal. 	are two things to show; use induction for both: (a) Every string in <i>Bal</i> can be derived from the grammar (easiest to show something more general by induction on the length of the string, and then use that to show this property); (b) every string that can be derived from the grammar is in <i>Bal</i> (easiest to show something more general by induction on the length of the derivation and then use that to show this property).
(#3) <mark>6+6</mark>	 13. For each of the following grammars G, show that G is ambiguous. Then find an equivalent grammar that is not ambiguous. a. ({S, A, B, T, a, c}, {a, c}, R, S), where R = {S → AB, S → BA, A → aA, A → ac, B → Tc, T → aT, T → a}. 	
<mark>11.14</mark> (#4) <mark>6</mark>	14. Let G be any context-free grammar. Show that the number of strings that have a derivation in G of length n or less, for any $n > 0$, is finite.	
11.15 (#5)	15. Consider the fragment of a Java grammar that is presented in Example 11.20. How could it be changed to force each else clause to be attached to the outer- most possible if statement?	
<mark>11.17</mark> (#6) <mark>6+3+6</mark>	 17. Consider the grammar G' of Example 11.19. a. Convert G' to Chomsky normal form. b. Consider the string id*id+id. i. Show the parse tree that G' produces for it. ii. Show the parse tree that your Chomsky normal form grammar pro- 	
11.18 (#7)	duces for it. 18. Convert each of the following grammars to Chomsky normal form: a. $S \rightarrow aSa$ $S \rightarrow B$ $B \rightarrow bbC$ $B \rightarrow bb$ $C \rightarrow \varepsilon$ $C \rightarrow cC$	
<mark>12.1b</mark> (#8) <mark>6</mark>	b. $S \rightarrow ABC$ $A \rightarrow aC \mid D$ $B \rightarrow bB \mid \varepsilon \mid A$ $C \rightarrow Ac \mid \varepsilon \mid Cc$	
<mark>12.1c</mark> (#9) <mark>6</mark>	$D \rightarrow aa$ c. $S \rightarrow aTVa$ $T \rightarrow aTa \mid bTb \mid \varepsilon \mid V$ $V \rightarrow cVc \mid \varepsilon$	
<mark>12.1d</mark> (#10) <mark>6</mark>	 Build a PDA to accept each of the following languages L: a. BalDelim = {w : where w is a string of delimiters: (,), [,], {, }, that are properly balanced}. b. {a'b' : 2i = 3j + 1}. c. {w ∈ {a,b}* : #_a(w) = 2 · #_b(w)}. d. {a"b" : m ≤ n ≤ 2m}. e. {w ∈ {a,b}* : w = w^R}. f. {a'b/^k : i i k ≥ 0 and (i ≠ i or i ≠ k)}. 	