$8.8(\# 1)$
$8.8 \mathrm{~d}, \mathrm{e}$
$(\# 2)(3,6)$
7. Prove that the regular languages are closed under each of the following operations:
a. $\operatorname{pref}(L)=\left\{w: \exists x \in \Sigma^{*}(w x \in L)\right\}$.
b. $\operatorname{suff}(L)=\left\{w: \exists x \in \Sigma^{*}(x w \in L)\right\}$.
c. $\operatorname{reverse}(L)=\left\{x \in \Sigma^{*}: x=w^{\mathrm{R}}\right.$ for some $\left.w \in L\right\}$.
d. letter substitution (as defined in Section 8.3).
8. Using the defintions of maxstring and mix given in Section 8.6 , give a precise definition of each of the following languages:
a. maxstring $\left(\mathrm{A}^{n} \mathrm{~B}^{n}\right)$.
b. maxstring $\left(\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}, 1 \leq k \leq j \leq i\right)$.
c. maxstring $\left(L_{1} L_{2}\right)$, where $L_{1}=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains exactly one a $\}$ and $L_{2}=\{a\}$.
d. $\operatorname{mix}\left((a b a)^{*}\right)$.
e. $\operatorname{mix}\left(\mathrm{a}^{*} \mathrm{~b}^{*}\right)$.
9. Prove that the regular languages are not closed under mix.

Definitions of maxstring and mix: Examples 8.22 and 8.23.

10. Recall that maxstring $(L)=\left\{w: w \in L\right.$ and $\left.\forall z \in \Sigma^{*}(z \neq \varepsilon \rightarrow w z \notin L)\right\}$.
a. Prove that the regular languages are closed under maxstring.
b. If maxstring (L) is regular, must L also be regular? Prove your answer.
8.10-a I.e, given a DFSM M $=(K, \Sigma, \delta$, s, A) such that $\mathrm{L}(\mathrm{M})=\mathrm{L}$, construct a DFSM $\mathrm{M}^{*}=\left(K^{*}, \Sigma, \Delta^{*}, s^{*}, A^{*}\right)$ such that $\mathrm{L}\left(\mathrm{M}^{*}\right)=$ maxstring (L).
16. Define two integers i and j to be $\boldsymbol{t w i n}$ primes \square iff both i and j are prime and $|j-i|=2$.
a. Let $L=\left\{w \in\{1\}^{*}: w\right.$ is the unary notation for a natural number n such that there exists a pair p and q of twin primes, both $>n$.$\} Is L$ regular?
b. Let $L=\{x, y: x$ is the decimal encoding of a positive integer i, y is the decimal encoding of a positive integer j, and i and j are twin primes \}. Is L regular?
21. For each of the following claims, state whether it is True or False. Prove your answer.
a. There are uncountably many non-regular languages over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
b. The union of an infinite number of regular languages must be regular.
c. The union of an infinite number of regular languages is never regular.
d. If L_{1} and L_{2} are not regular languages, then $L_{1} \cup L_{2}$ is not regular.
e. If L_{1} and L_{2} are regular languages, then $L_{1} \otimes L_{2}=\left\{w: w \in\left(L_{1}-L_{2}\right)\right.$ or $\left.w \in\left(L_{2}-L_{1}\right)\right\}$ is regular.
f. If L_{1} and L_{2} are regular languages and $L_{1} \subseteq L \subseteq L_{2}$, then L must be regular.
g. The intersection of a regular language and a nonregular language must be regular.
h. The intersection of a regular language and a nonregular language must not be regular.
i. The intersection of two nonregular languages must not be regular.
j. The intersection of a finite number of nonregular languages must not be regular.
k. The intersection of an infinite number of regular languages must be regular.
I. It is possible that the concatenation of two nonregular languages is regular.
\mathbf{m}. It is possible that the union of a regular language and a nonregular language is regular.
n. Every nonregular language can be described as the intersection of an infinite number of regular languages.
o. If L is a language that is not regular, then L^{*} is not regular.
9.1 (\#10)
9.1b
(\#11) (6)
9.1d
(\#12) (6)
9.1g

See note
below
(\#13) (6)
9.1i
(\#14) (6)

1. Define a decision procedure for each of the following questions. Argue that each of your decision procedures gives the correct answer and terminates.
a. Given two DFSMs M_{1} and M_{2}, is $L\left(M_{1}\right)=L\left(M_{2}\right)^{\mathrm{R}}$?
b. Given two DFSMs M_{1} and M_{2} is $\left|L\left(M_{1}\right)\right|<\left|L\left(M_{2}\right)\right|$?
c. Given a regular grammar G and a regular expression α, is $L(G)=L(\alpha)$?
d. Given two regular expressions, α and β, do there exist any even length strings that are in $L(\alpha)$ but not $L(\beta)$?
e. Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and let α be a regular expression. Does the language generated by α contain all the even length strings in Σ^{*}.
f. Given an FSM M and a regular expression α, is it true that both $L(M)$ and $L(\alpha)$ are finite and M accepts exactly two more strings than α generates?
g. Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$ and let α and β be regular expressions. Is the following sentence true:

$$
\left(L(\beta)=\mathrm{a}^{*}\right) \vee\left(\forall \boldsymbol{w}\left(w \in\{\mathrm{a}, \mathrm{~b}\}^{*} \wedge|\boldsymbol{w}| \text { even }\right) \rightarrow w \in L(\alpha)\right)
$$

h. Given a regular grammar G, is $L(G)$ regular?
i. Given a regular grammar G, does G generate any odd length strings?

9.1g:

There is a small error in the statement of the problem. a* should be $\{a\}^{*}$

9.1b:

Note that $|\mathrm{L}(\mathrm{M})|$ means "the number of elements in the language accepted by the machine M. Note that for some machines M, the language is countably infinite.

