2.1 means Exercise 1 from Chapter 2. This is a moderately substantial assignment.

Key:
(No symbol) Not required to be turned in. Just be sure that you can do it.
(t-7) To be turned in and graded, worth 7 points.

1. 8.1abdehijlnptu (additional practice problems)
2. $(t-3) 8.1 e$
3. $(\mathrm{t}-3) 8.1 \mathrm{f}$

Previous questions and answers from Piazza:
Q The last part of the definition of this language is $|\mathrm{x}| \cdot|\mathrm{y}| \equiv_{5} 0$. Does this simply mean, the length of x times the length of y is a multiple of 5 ? Or does the dot notation imply something else? A It means what you think it means.
4. $(t-3) 8.1 \mathrm{~g}$
5. (t-3) 8.1 h
6. $(\mathrm{t}-3) 8.1 \mathrm{k}$
7. (t-3) 8.1 m
8. (t-9) 8.7a. Do this problem by construction; produce an algorithm that takes as input a DFSM $M=(K, \Sigma, \delta, s, A)$ that accepts language L . The algorithm returns the description of a DFSM $M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$ that accepts $\operatorname{pref}(L)$. You do not have to write a formal proof that the new machine actually accepts pref(L). Hint: M’ will have a lot of its elements in common with M, but it takes a somewhat complex calculation (based on M) to determine exactly what has to be changed.
9. 8.2 ac
10. 8.3
11. $(\mathrm{t}-6) 8.4 \mathrm{a}$
12. 8.4 b
13. 8.7

The last two problems used to be part of HW7.
14. (t-9) 6.18 Regular expression based on a relation and its closure. Transitive and reflexive closures are introduced in Section A. 5 Closures under various operations are also mentioned on pages 17, 57, 72 (12, 42, 53 in the online PDF file).
15. 6.20 True-False problems. Good practice for exams. Similar exam problems will usually not require proofs.

