## 474 HW 3 problems (highlighted problems are the ones to turn in)

| 5.2<br>5.2j<br>5.2l                            | <ul> <li>2. Show a DFSM to accept each of the following languages:</li> <li>a. {w ∈ {a,b}*: every a in w is immediately preceded and followed by b}.</li> <li>b. {w ∈ {a,b}*: w does not end in ba}.</li> <li>c. {w ∈ {0,1}*: w corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}.</li> <li>d. {w ∈ {0,1}*: w corresponds to the binary encoding, without leading 0's, of natural numbers that are powers of 4}.</li> <li>e. {w ∈ {0,1}*: w corresponds to the decimal encoding, without leading 0's, of an odd natural number}.</li> <li>f. {w ∈ {0,1}*: w corresponds to the decimal encoding, without leading 0's, of an odd natural number}.</li> <li>f. {w ∈ {0,1}*: w has 001 as a substring}.</li> <li>g. {w ∈ {0,1}*: w has 001 as a substring}.</li> <li>j. {w ∈ {0,1}*: w has bab as a substring}.</li> <li>i. {w ∈ {a,b}*: w has bab as a substring}.</li> <li>j. {w ∈ {a,b}*: w has bab as a substring}.</li> <li>j. {w ∈ {a,b}*: w has both aa and bb as a substring}.</li> <li>j. {w ∈ {a,b}*: w has both aa and bb as a substring}.</li> <li>j. {w ∈ {a,b}*: w has no more than one pair of consecutive 0's and no more than one pair of consecutive 1's}.</li> <li>m. {w ∈ {0,1}*: none of the prefixes of w ends in 0}.</li> </ul> | If you<br>need<br>simpler<br>practice<br>problems,<br>do some<br>other<br>parts of<br>5.2 first. |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                | <b>n.</b> $\{w \in \{a, b\}^* : (\#_a(w) + 2 \cdot \#_b(w)) \equiv 50\}$ . $(\#_a(w)$ is the number of a's in $w$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                  |
| 5.3                                            | <ol> <li>Consider the children's game Rock, Paper, Scissors □. We'll say that the first player to win two rounds wins the game. Call the two players A and B.</li> <li>a. Define an alphabet ∑ and describe a technique for encoding Rock, Paper, Scissors games as strings over ∑. (<i>Hint</i>: Each symbol in ∑ should correspond to an ordered pair that describes the simultaneous actions of A and B.)</li> <li>b. Let L<sub>RPS</sub> be the language of Rock, Paper, Scissors games, encoded as strings as described in part (a), that correspond to wins for player A. Show a DFSM that</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |
| <mark>5.4</mark>                               | accepts $L_{RPS}$ .<br>4. If <i>M</i> is a DFSM and $\varepsilon \in L(M)$ , what simple property must be true of <i>M</i> ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                  |
| <mark>Problem</mark><br>5 (On the              | The answer is simple and straightforward, so don't look for anything complicated or tricky.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                  |
| assignme<br>nt sheet,<br>not from<br>textbook. | <ul> <li>5. (t-6)Let L be {w∈{0, 1}* : ∃n,k∈N (w = <n> ∧ n = 3k)}. I.e. the set of binary repres natural numbers that are divisible by 3. Leading zeroes are allowed. Recall that Draw the transition diagram or a transition table for a DFSM that accepts L. [Hi remainders mod 3. Another hint: There are not many states].</n></li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0∈ℕ.                                                                                             |
| DFSM for<br>"divisible<br>by 3")<br>5.5        | 5. Consider the following NDFSM <i>M</i> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |
|                                                | For each of the following strings $w$ , determine whether $w \in L(M)$ :<br>a. aabbba.<br>b. bab.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                  |

c. baba.



Problem 10 is not from the textbook, so it is not shown on this page., only on the assignment page. It is a challenging problem for many students.