

6. Show a possibly nondeterministic FSM to accept each of the following languages:
a. $\left\{\mathrm{a}^{n} \mathrm{ba}^{m}: n, m \geq 0, n \equiv{ }_{3} m\right\}$.
b. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}: w\right.$ contains at least one instance of aaba, bbb or ababa $\}$.
c. $\left\{\boldsymbol{w} \in\{0-9\}^{*}: w\right.$ corresponds to the decimal encoding of a natural number whose encoding contains, as a substring, the encoding of a natural number that is divisible by 3$\}$.
d. $\left\{w \in\{0,1\}^{*}: w\right.$ contains both 101 and 010 as substrings $\}$.
e. $\left\{w \in\{0,1\}^{*}: w\right.$ corresponds to the binary encoding of a positive integer that is divisible by 16 or is odd $\}$.
f. $\left\{\boldsymbol{w} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}^{*}:|w| \geq 2\right.$ and w begins and ends with the same symbol $\}$.
7. Show an FSM (deterministic or nondeterministic) that accepts $L=\{\dot{w} \in\{\mathrm{a}, \dot{\mathrm{b}}$,
$\mathrm{c}\}^{*}: w$ contains at least one substring that consists of three identical symbols in a
row\}. For example:

- The following strings are in L : aabbb, baacccbbb.
- The following strings are not in $L: \varepsilon$, aba, abababab, abcbcab.

5.6(c)

Note that this one is decimal, while problem 1 is binary. Also notice the "contains a substring" part.

Problem 10 is not from the textbook, so it is not shown on this page., only on the assignment page. It is a challenging problem for many students.

