474 Instructor Notes from Day 17 slides:

Slide 7: Using the Closure Properties
Answer: a*b*

Slide 10: L ={a'b’: i, j> 0 and i # j}

If =L were reqular, then the intersection of —L and a*b* would be regular. In aprevious slide, we showed that it
is not regular.

Slide 21: Defining Functions from one Language to Another

Let w be any string from a*db*. |w]| is even, it contributes nothing to chop(L).

If |w| odd, and #a's = #b's. then w contribtes a"b" to chop(L), for some L.

otherwise, |w| is odd, and d is not in the middle, so chop removes an a or b.

Since |W| is odd difference between #a and #b must be at least 2, so chopped string also has
different number of a's and b's.

Chop(a*db*) contains all strings from A"B", plus some strings in {a*bb* whose length is even}.
Can it be regular? If so, its intersection with a*b* would be regular. But that intersection is A"B"

Slide 29: Totality
Construct M~ to accept —L(M).
2. Return emptyFSM(M").

Slide 30: Finiteness:
The mere presence of a loop does not guarantee that L(M) is infinite. The loop might be:
* labeled only with g,
e unreachable from the start state, or
e noton a path to an accepting state.
1. M= ndfsmtodfsm(M).
2. M”= minDFSM(M).
3. Mark all states in M that are on a path to an accepting
state.
4. Considering only marked states, determine whether there
are any cyclesin M”.
5. If there are cycles, return True. Else return False.
The simulation approach:
M= ndfsmtodfsm(M).
2. For each string w in * such that do: [answer: |Ky'| <w<2-|Ky'|-1]
Run decideFSM(M’, w).
3. If M accepts at least one such string, return False.

Else return True.
Slide 34: Minimality
M= minDFSM(M).
2. If | K| = |Ky-| return True; else return False.

