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Poetry
The Pumping Lemma

Any regular language L has a magic number p
And any long-enough word in L has the following property:
Amongst its first p symbols is a segment you can find
Whose repetition or omission leaves x amongst its kind.

So if you find a language L which fails this acid test,
And some long word you pump becomes distinct from all the

rest,
By contradiction you have shown that language L is not
A regular guy, resiliant to the damage you have wrought.

But if, upon the other hand, x stays within its L,
Then either L is regular, or else you chose not well.
For w is xyz, and y cannot be null,
And y must come before p symbols have been read in full.

As mathematical postscript, an addendum to the wise:
The basic proof we outlined here does certainly generalize.
So there is a pumping lemma for all languages context-free,
Although we do not have the same for those that are r.e.

-- Martin Cohn

Your 
questions?

L = {an: n is prime}
L = {w = an: n is prime}

Let w = aj, where j = the next prime number greater than k:
a a a a a a a a a a a a a

x     y z
|x| + |z| may be prime.
|x| + |y| + |z| is prime. 
|x| + 2|y| + |z| may be prime.
|x| + 3|y| + |z| may be prime, and so forth.

|  |  |   |   |      |      |   |       |         |              |            | |
|  |  |   |   |      |      |   |       |         |              |            | |

|        |        |        |        |        |        | | | | | |
|        |        |        |        |        |        | | | | | |

p

But the Prime Number Theorem tells us that the primes "spread out", 
i.e., that the number of primes not exceeding x is asymptotic to x/ln x. 
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L = {an: n is prime}

Let w = aj, where j is the smallest prime number > k+1.  

y = ap for some p.  

q  0 (a|x| + |z| +q|y| must be in L).  So |x| + |z| +q|y| must be prime.

But suppose that q = |x| + |z|.  Then:       

|x| + |z| +q|y| = |x| + |z| + (|x| + |z|)y
= (|x| + |z|)(1 + |y|), 

which is non-prime if both factors are greater than 1:  

L = {an: n is prime}

Let w = aj, where j is the smallest prime number > k+1.  

y = ap for some p.  

q  0 (a|x| + |z| +q|y| must be in L).  So |x| + |z| +q|y| must be prime.

But suppose that q = |x| + |z|.  Then:       

|x| + |z| +q|y| = |x| + |z| + (|x| + |z|)y
= (|x| + |z|)(1 + |y|), 

which is non-prime if both factors are greater than 1:  

(|x| + |z|) > 1 because |w| > k+1 and |y|  k.  
(1 + |y|) > 1 because |y| > 0.  
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L = {aibj: i, j  0 and i  j}

Try to use the Pumping Theorem by letting w = ak+1bk: 

L = {aibj: i, j  0 and i  j}

Try to use the Pumping Theorem by letting w = akbk+k!.  

Then y = ap for some nonzero p.  

Let q = (k!/p) + 1 (i.e., pump in (k!/p) times).  

Note that (k!/p) must be an integer because p  k.  

The number of a’s in the new string is k + (k!/p)p = k + k!.  

So the new string is ak+k!bk+k!, which has equal numbers 
of a’s and b’s and so is not in L. 



3/30/2018

4

L = {aibj: i, j  0 and i  j}

An easier way:  

If L is regular then so is L.  Is it?

L = {aibj: i, j  0 and i  j}

An easier way:  

If L is regular then so is L.  Is it?

L = AnBn  {out of order}

If L is regular, then so is L = L  a*b*

= ___________
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L = { aibjck : i, j, k  0 and 
(if i=1 then j=k) } 

This is example 8.16 in the textbook.  Be sure to read it.

Using the Pumping Theorem Effectively

● To choose w:
● Choose a w that is in the part of L that makes it not 
regular.  

● Choose a w that is only barely in L.  
● Choose a w with as homogeneous as possible an 
initial region of length at least k.

● To choose q:
● Try letting q be either 0 or 2.
● If that doesn’t work, analyze L to see if there is some 
other specific value that will work.
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Regular Languages closed under chop?

Let chop(L) = 
{w : xL

( x = x1cx2, 
x1  L*, 
x2  L*, 
c  L, 
|x1| = |x2|, and 
w = x1x2)}

Is the set of regular languages closed under chop?

L chop(L)



a*b*

a*db*

What do we need to do:
a. If the answer is yes?
b. If the answer is no?

Also see Examples 
8.20(firstchars), 
8.22(maxstring, 
8.23(mix)

Decision Procedures

A decision procedure is an algorithm whose result is a 
Boolean value.  It must:

● Halt
● Be correct

Important decision procedures exist for regular languages:

● Given an FSM M and a string s, does M accept s?  

● Given a regular expression  and a string w, does 
generate w? 
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Membership

We can answer the membership question by running an 
FSM. 

But we must be careful if it's an NDFSM:

Membership

decideFSM( FSMdescription <M>, string w) 
If ndfsmsimulate(M, w) accepts then return True

else return False.

decideregex(regex , string w) 
From , use regextofsm to construct an FSM M

such that L() = L(M).
Return decideFSM(M, w). 

Recall that ndfsmsimulate takes epsilon-closure at 
every stage, so there is no danger of getting into an 
infinite loop. 
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Emptiness and Finiteness

● Given an FSM M, is L(M) empty?

● Given an FSM M, is L(M) = M*?

● Given an FSM M, is L(M) finite?

● Given an FSM M, is L(M) infinite?

● Given two FSMs M1 and M2, are they equivalent? 

Emptiness
• Given an FSM M, is L(M) empty? 

• The simulation approach:

• The graph analysis approach:

1.  Let M = ndfsmtodfsm(M).
2.  For each string w in * such that |w| < |KM | do:

Run decideFSM(M, w). 
3.  If M accepts at least one such string, return False. Else return True.

1.  Mark all states that are reachable via some path from the 
start state of M.

2.  If at least one marked state is an accepting state, return False.  Else 
return True.

• The minimal DFSM approach:

1.  Create a minimal DFSM M that is equivalent to M.
2.  If M has exactly one state that is not Accepting , return True.  

Else return False.
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Totality

• Given an FSM M, is L(M) = M*?

Finiteness

• Given an FSM M, is L(M) finite? 

• The graph analysis approach:

• The simulation approach



3/30/2018

10

Equivalence

● Given two FSMs M1 and M2, are they equivalent?  In 
other words, is L(M1) = L(M2)?  We can describe two 
different algorithms for answering this question. 

Equivalence

● Given two FSMs M1 and M2, are they equivalent?  In 
other words, is L(M1) = L(M2)?   

equalFSMs1(M1: FSM, M2: FSM) = 
1. M1 = buildFSMcanonicalform(M1).
2. M2 = buildFSMcanonicalform(M2).
3. If M1 and M2 are equal, return True, else return False.
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Equivalence

● Given two FSMs M1 and M2, are they equivalent?  In 
other words, is L(M1) = L(M2)?  

equalFSMs2(M1: FSM, M2: FSM) =
1. Construct MA to accept L(M1) - L(M2).  
2. Construct MB to accept L(M2) - L(M1).
3. Construct MC to accept L(MA)  L(MB).
4. Return emptyFSM(MC).

Observe that M1 and M2 are equivalent iff:

(L(M1) - L(M2))  (L(M2) - L(M1)) = . 

Minimality

● Given DFSM M, is M minimal? 
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Answering Specific Questions

Given two regular expressions 1 and 2, is:

(L(1)  L(2)) – {}  ?

1. From 1, construct an FSM M1 such that L(1) = L(M1).
2. From 2, construct an FSM M2 such that L(2) = L(M2).
3. Construct M such that L(M ) = L(M1)  L(M2).
4. Construct M such that L(M) = {}.
5. Construct M such that L(M ) = L(M ) - L(M).
6. If L(M ) is empty return False; else return True.

(in the exercises, you'll write an algorithm for step 6)

Summary of Algorithms

● Operate on FSMs without altering the language that is 
accepted:

● Ndfsmtodfsm
● MinDFSM 
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Summary of Algorithms
● Compute functions of languages defined as FSMs:

● Given FSMs M1 and M2, construct a FSM M3 such that 
L(M3) = L(M2)  L(M1).

● Given FSMs M1 and M2, construct a new FSM M3 such that
L(M3) =  L(M2) L(M1).

● Given FSM M, construct an FSM M* such that 
L(M*) = (L(M))*.

● Given a DFSM M, construct an FSM M* such that
L(M*) = L(M).

● Given two FSMs M1 and M2, construct an FSM M3 such that 
L(M3) =  L(M2)  L(M1).

● Given two FSMs M1 and M2, construct an FSM M3 such that 
L(M3) =  L(M2) - L(M1).

● Given an FSM M, construct an FSM M* such that 
L(M*) = (L(M))R.

● Given an FSM M, construct an FSM M* that accepts 
letsub(L(M)).

Algorithms, Continued

● Converting between FSMs and regular expressions:
● Given a regular expression , construct an FSM M

such that: 
L() = L(M)

● Given an FSM M, construct a regular expression 
such that:

L() = L(M)

● Algorithms that implement operations on languages 
defined by regular expressions: any operation that can 
be performed on languages defined by FSMs can be 
implemented by converting all regular expressions to 
equivalent FSMs and then executing the appropriate 
FSM algorithm. 
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Algorithms, Continued

● Converting between FSMs and regular grammars:

● Given a regular grammar G, construct an FSM M
such that: 

L(G) = L(M)

● Given an FSM M, construct a regular grammar G
such that: 

L(G) = L(M).

Algorithms: Decision Procedures

● Decision procedures that answer questions about languages 
defined by FSMs:

● Given an FSM M and a string s, decide whether s is
accepted by M.

● Given an FSM M, decide whether L(M) is empty.
● Given an FSM M, decide whether L(M) is finite.
● Given two FSMs, M1 and M2, decide whether 

L(M1) = L(M2).  
● Given an FSM M, is M minimal?

● Decision procedures that answer questions about languages 
defined by regular expressions: Again, convert the regular 
expressions to FSMs and apply the FSM algorithms.
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Context-Free Grammars

Chapter 11

Languages and Machines
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Rewrite Systems and Grammars

A rewrite system (or production system or rule-based 
system) is:

● a list of rules, and 
● an algorithm for applying them.  

Each rule has a left-hand side and a right hand side. 

Example rules:

S  aSb 
aS  
aSb bSabSa

Simple-rewrite

simple-rewrite(R: rewrite system, w: initial string) = 

1. Set working-string to w.

2. Until told by R to halt do:
Match the lhs of some rule against some part of 
working-string.

Replace the matched part of working-string with the 
rhs of the rule that was matched.

3. Return working-string.
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A Rewrite System Formalism

A rewrite system formalism specifies:

● The form of the rules

● How simple-rewrite works:
● How to choose rules?
● When to quit?

An Example
w = SaS

Rules: 
[1]   S  aSb
[2]   aS  

● What order to apply the rules?

● When to quit?
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Rule Based Systems

● Expert systems

● Cognitive modeling

● Business practice modeling

● General models of computation

● Grammars

Grammars Define Languages
A grammar, G,  is a set of rules that are stated in terms 
of two alphabets:

• a terminal alphabet, , that contains the symbols that 
make up the strings in L(G), and 

•a nonterminal alphabet, the elements of which will 
function as working symbols that will be used while the 
grammar is operating.  These symbols will disappear by 
the time the grammar finishes its job and generates a 
string.

A grammar has a unique start symbol, often called S.   
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Using a Grammar to Derive a String

Simple-rewrite (G, S) will generate the strings in L(G).  

We will use the symbol  to indicate steps in a 
derivation.  

In our example:
[1]   S  aSb
[2]   aS  

A derivation could begin with:

S  aSb aaSbb …

Generating Many Strings

• Multiple rules may match.

Given: S  aSb, S  bSa, and S  

Derivation so far: S  aSb aaSbb

Three choices at the next step:

S  aSb aaSbb aaaSbbb (using rule 1), 
S  aSb aaSbb aabSabb (using rule 2), 
S  aSb aaSbb aabb (using rule 3).
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Generating Many Strings

• One rule may match in more than one way.

Given: S  aTTb, T  bTa, and T  

Derivation so far: S  aTTb

Two choices at the next step:

S  aTTb abTaTb
S  aTTb aTbTab

When to Stop
May stop when:

1. The working string no longer contains any nonterminal 
symbols (including, when it is ).

In this case,  we say that the working string is generated
by the grammar.  

Example:

S  aSb aaSbb aabb
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When to Stop
May stop when:

2. There are nonterminal symbols in the working string but 
none of them is in a substring that is the left-hand side of 
any rule in the grammar.

In this case, we have a blocked or non-terminated derivation 
but no generated string.

Example:

Rules: S  aSb, S  bTa, and S  

Derivations: S  aSb abTab [blocked]

When to Stop

It is possible that neither (1) nor (2) is achieved.  

Example: 

G contains only the rules S  Ba and B  bB, with S the start 
symbol.  

Then all derivations proceed as:

S  Ba bBa bbBa bbbBa  bbbbBa  ...
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Context-free Grammars, Languages, 
and PDAs

Context-free 
Language

Context-free 
Grammar

PDA

L

Accepts

Context-Free Grammars

No restrictions on the form of the right hand sides.

S  abDeFGab

But require single non-terminal on left hand side.

S 

but not  ASB 
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anbn

Balanced Parentheses language
ambn : m>= n

Context-Free Grammars

A context-free grammar G is a quadruple,
(V, , R, S), where:

● V is the rule alphabet, which contains nonterminals  
and terminals.

●  (the set of terminals) is a subset of V,
● R (the set of rules) is a finite subset of (V - ) V*, 
● S (the start symbol) is an element of V - .

Example:

({S, a, b},  {a, b},   {S  a S b, S  },  S)

Rules are also known as productions.


