3/21/2018

MA/CSSE 474

Theory of Computation

Regular Expressions Intro

Your Questions?

* Monday's class

material Still more
* Reading Assignments language

+ HWS5 problems ambiguity!
* Anything else

YBURE GOINGTD WORKS FINE .)
MNEED To CHECK. _
YoUR WEAPON. 3

5013 John L. Haskt FLP

LS

JohnMartStudios.co

3/21/2018

Regular Languages
Describes
Language

Accepts

Finite State
Machine

Regular Expressions

The regular expressions over an alphabet X are the
strings that can be obtained from the following recursive
definition:

1. O is a regular expression.

2. g is a regular expression.

3. Every element of X is a regular expression.
4.If o, B are regular expressions, then so is af.
5. If o, B are regular expressions, then so is aUp.
6. If a is a regular expression, then so is a*.

7. o is a regular expression, then so is a™.

8. If a is a regular expression, then so is (a).

9. Nothing else is a regular expression.

3/21/2018

Regular Expression Examples

If ¥ = {a, b}, the following are regular expressions:

1. D is a regular expression.
2. ¢ is a regular expression.
3. Every element of X is a regular expression.
4. If a, B are regular expressions, then so is a.
& 5. If o, B are regular expressions, then so is aUp.
6. If o is a regular expression, then so is a*.
7. o is a regular expression, then so is a*.
8. If a is a regular expression, then so is (o).

(a v b)*
(abba U €)* (a U bab)

Regular Expressions Define Languages

Define L, a semantic interpretation function for regular expressions (Let a
and B be arbitrary regular expressions over alphabet %).

. L(D) = @.

. L(e) = {&}.

.Ifc e X, L(c) ={c}.

- L(ap) = L(a) L(B).

. L(a w B) = L(a) U L(B).

- L(a”) = (L(a))".

. L(a*) = L(aa™) = L(a) (L(a))*. If L(a) is equal to &, then L(a*) is also equal to
. Otherwise L(a*) is the language that is formed by concatenating together
one or more strings drawn from L(a).

8. L((a)) = L().

N o Ok WODN -

3/21/2018

The Roles of the Rules

-+ Rules1,3,4,5,and 6
». give the regular
expression language its
power to define sets.

| & . 1. @ is a regular expression.
i, - Rule8hasgrouping 5 s 5 regular expression.

Z;hi?; iﬁ?ﬁi}c’:ns 3. Every element of X is a regular expressign.

4. If o, B are regular expressions, then so is af.

& * Rules2and 7 appear 5. If o, B are regular expressions, then so is aUp.

to add functionality to g _|f ¢ is a regular expression, then so is o*.

the regular expression 7 is g regular expression, then so is o*.

language, but they . . .
don't. They are very 8. If a is a regular expression, then so is (o).

convenient, though.

Operator Precedence in Regular Expressions
Regular Arithmetic
Expressions Expressions
Highest Kleene * and + exponentiation
concatenation multiplication
Lowest union addition
a bruc d* Xy2+yx?

3/21/2018

Analyzing a Regular Expression
L((a u b)*b) = L((a U b)*) L(b)
= (L(a v b))* L(b)

= (L(a) v L(b))* L(b)

= ({a} U {b))* {0}
= {a, by* {b}.
From English to reg exps

L ={w e {a, b}*: |w| is even}

L ={w € {0, 1}*: w is a binary representation of a positive
multiple of 4}

R
N T MRV, adielis AR | |
(2 A E,' Wzy R e J,“,\

L = {w e {a, b}*: w contains an odd number of a’s}

3/21/2018

The Details Matter
L(a* u b*) = L((a U b)*)

L((ab)*) = L(a*b*)

: More Regular Expression
Examples

(aa*) U ¢ is equivalent to

(aw g)* is equivalent to

- 3 ‘.:i AR
3 WY, g e W

L ={w e {a, b}*: there is no more than one b in w}

L = {w e {a, b}* : no two consecutive letters in w are the same}

3/21/2018

The Details Matter

L, ={w e {a, b}* : every a is immediately followed by b}

A regular expression for L;:

AFSM for L,:

L, ={w e {a, b}* : every a has a matching b somewhere}

A regular expression for L,:

A FSM for L,:

Simplifying Regular Expressions

Regex’s describe sets:
e Union is commutative: aup=puU a.
e Union is associative: (ac U B)Uy=a U (BuUry).
e J is the identity for union: a U J=J U a = a.
e Union is idempotent: a U a = a.
Concatenation distributes

Concatenation: .
over union:

e Concatenation is associative: (ap)y = a(By).
e ¢ is the identity for concatenation: a ¢ =¢a = a.
e Jis a zero for concatenation: o & =J a = J.
Kleene star:
o =g,
e =g,
.(a* * = a*.

o ofa* = ok,

oo U B)* = (")

e (auB)y=(ay)u (By)
ey (auUB)=(ya)u (v B)

3/21/2018

Kleene's Theorem

Finite state machines and regular expressions define the
same class of languages.

To prove this, we must show:

Theorem: Any language that can be defined by a regular
expression can be accepted by some FSM and so is

regular.
We do reg. exp. - NDFSM because it is easiest, and this

is sufficient because we already know NDFSM = DFESM)

Theorem: Every regular language (i.e., every language that
can be accepted by some DFSM) can be defined with a

regular expression.

For Every Regular Expression
There is a Corresponding FSM

We’'ll show this by construction. An FSM for:

O

A single element c of X: .
€: E :

3/21/2018

Union

If o is the regular expression U y and if both L() and
L(y) are regular:

Concatenation

If o is the regular expression By and if both L(p) and L(y)
are regular:

S| o

M| M2

3/21/2018

Kleene Star

If o is the regular expression B* and if L(p) is regular:

An Example

(b U ab)*

An FSM for b An FSM for a An FSM for b
IR o ROING

An FSM for ab:

10

3/21/2018

An Example

(b U ab)*

An FSM for (b U ab):

An Example

(b U ab)*

An FSM for (b U ab)*:

11

