MA/CSSE 474 Exam 3 Notation and Formulas page Name ________________ (turn this in with your exam)
Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet ; while a, b, c, d are individual alphabet symbols.
[image:]
DFSM notation: M= (K, , , s, A), where:
 K is a finite set of states, is a finite alphabet
 s K is start state, A K is set of accepting states
 : (K) K is the transition function
Extend 's definition to : (K *) K by the recursive definition (q,)=q,
 (q, xa) = ((q, x), a)
M accepts w iff (s, w) A. L(M) = {w ∊ Σ* : δ(s, w) ∊ A}
Alternate notation:
(q, w) is a configuration of M. (current state, remaining input)
The yields-in-one-step relation: |-M :
	(q, w) |-M (q', w') iff w = a w' for some symbol a , and (q, a) = q'
The yields-in-zero-or-more-steps relation: |-M* is the reflexive, transitive closure of |-M .
A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n 0 such that:
 • C0 is an initial configuration,
 • Cn is of the form (q,), for some state q KM,Reg. exp. operator precedence (High to Low):
 parenthesized expressions, * and +, concatenation, union

 • i{0, 1, …, n-1} (Ci |-M Ci+1)
 M accepts w iff the state that is part of the last step in w is in A.
A language L is regular if L=L(M) for some DFSM M.
In an NDFSM, the function is replaced by the relation Δ: Δ ⊆ (K ({})) K
Equivalent strings relative to a language: Given a language L, two strings w and x in L* are indistinguishable with respect to L, written wLx, iff z * (xz L iff yz L).
[x] is a notation for "the equivalence class that contains the string x".
The construction of a minimal-state DSFM based on L:
M = (K, , , s, A), where K contains n states, one for each equivalence class of L.
s = [], the equivalence class containing under L,
A = {[x] : x L},
([x], a) = [xa].
Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language. Any given element of the language will appear within a finite amount of time. It is allowed that some may appear multiple times.
Recognizer: Given a string s, recognizer halts and accepts s if s is in the language. If not, recognizer either halts and rejects s or keeps running forever. This is a semidecision procedure. If recognizer is guaranteed to always halt and
 (accept or reject) no matter what string it is given as input, it is a decision procedure.
The regular expressions over an alphabet are the strings that can be obtained as follows:
1. is a regular expression.Functions on languages:
firstchars(L) = {w : yL (y = cx, c L, x L*, and w c*)}
chop(L) = {w : xL (x = x1cx2, x1 L*, x2 L*, c L |x1| = |x2|, and w = x1x2)}
maxstring(L) = {w: w L, z * (z wz L)}
mix(L) = {w: x, y, z (x L, x = yz, |y| = |z|, w = yzR)}
middle(L) = {x: y, z * (yxz L)}
alt(L) = {x: y,n (y L , |y| = n, n > 0, y = a1…an,i n (ai), and
 x = a1a3a5…ak, where k = (if n is even then n-1 else n))}

2. is a regular expression.
3. Every element of is a regular expression.
4. If , are regular expressions, then so is .
5. If , are regular expressions, then so is .
6. If is a regular expression, then so is *.
7. is a regular expression, then so is +.
8. If is a regular expression, then so is ().

Recursive formula for constructing a regular expression from a DFSM: rijk is rij(k-1) rik(k-1)(rkk(k-1))*rkj(k-1)
The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse

Pumping Theorem and its contrapositive:
 The contrapositive form:
(k 1 				
 (a string w L
 (|w| k and
 (x, y, z
 ((w = xyz ∧ |xy| k ∧ y) →
 q 0 (xyqz is not in L)
)))))
→ L is not regular

Formally, if L is regular, then
k 1 such that
 (strings w L, (|w| k → 	
 (x, y, z (w = xyz, |xy| k, y , and
 q 0 (xyqz is in L)))))

CFG definition: G = (V, Σ, R, S)
(vocabulary, terminals, rules, start symbol)
Derivation and language definition
One derivation step: x G y iff ∃α,β,γ∈V*, A∈N ((x = A) ∧ (A ∈ R) ∧ (y =))
G* is the reflexive, transitive closure of G
The language defined by a grammar: L(G) = {w * : S G* w}
L is context-free if there is a context-free grammar G such that L = L(G).
A parse tree, derived from a grammar G = (V, , R, S), is a rooted, ordered tree in which:
 Every leaf node is labeled with an element of {},
 The root node is labeled S,
 Every other node is labeled with an element of N, and
 If m is a non-leaf node labeled X and the (ordered) children of m are labeled x1, x2, …, xn,
then R contains the rule X x1 x2, … xn.
Chomsky Normal Form, in which all rules are of one of the following two forms:
X a, where a , or X BC, where B and C are elements of V - .
Greibach Normal Form, in which all rules are of the form X a , where a and N*.
A grammar is ambiguous if some string it generates has two different parse trees
Equivalently, two different leftmost derivations, or two different rightmost derivations
A CFL is inherently ambiguous if every CFG that generates it is ambiguous.
PDA definition: M = (K, , , , s, A),
 states, input alphabet, tape alphabet, transition relation, start state, accepting states
(q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2)) .
accepting computation of M: (s, w,) |-M* (q, ,), and q A
Top-down PDA from grammar: Production A XYZ becomes (q, ε, A) (q, XYZ)
(s, ε, ε) (q, S) [s is the start state of M). A ={q} . For each terminal, (q, a, a) (q, ε)
Bottom-up PDA from grammar: The shift transitions: ((p, c,), (p, c)), for each c .
The reduce transitions: ((p, , (s1s2…sn.)R), (p, X)), for each rule X s1s2…sn. in G. .
The finish-up transition: ((p, , S), (q,)). A = {q}
CFL closure: Union, Concatenation, Kleene Star. Reverse. Intersection with regular language.
Not closed under complement, intersection, set difference.
We have CFL decision algorithms for membership, emptiness, finiteness.
Undecidable questions about CFLs: Is L = *? Is L regular? Is L1 = L2? Is L1 L2? Is L1 L2 = ?
Is the complement of L context-free? Is L1 L2 = ? Is L inherently ambiguous? Is G ambiguous?
Deterministic PDA M: M contains no pairs of transitions that compete with each other, and whenever M is in an accepting configuration it has no available moves.
A language L is deterministic context-free iff L$ can be accepted by some deterministic PDA.
Formal TM definition. A deterministic TM M is (K, , , , s, H):
i) K is a finite set of states;contrapositive of CFG Pumping Theorem:
If k 1 (a string w L, where |w|
 (u, v, x, y, z
 ((w = uvxyz, vy , and |vxy| k)
 implies
	 (q 0 (uvqxyqz is not in L))))),
 then L is not context-free

ii) is the input alphabet, which does not contain ☐;
iii) is the tape alphabet, which must contain ☐ and have as a subset.
iv) s K is the initial state;
v) H K is the set of halting states;
vi) is the transition function:
(1) (K - H) to K 	 	 	{, }
non-halting tape state tape direction to move
 state char		 char	 (R or L)
Yields. (q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via , in one step.
[bookmark: _GoBack]|-M* is the reflexive, transitive closure of |-M.
Configuration C1 yields configuration C2 if: C1 |-M* C2.
A path through M is a sequence of configurations C0, C1, …, Cn for some n 0 such that C0 is the init config and C0 |-M C1 |-M C2 |-M … |-M Cn.
A computation by M is a path that halts. If a computation is of length n (has n steps), we write: C0 |-Mn Cn

2) TMs as language recognizers. Let M = (K, , , , s, {y, n}).
a)
b) M accepts a string w iff (s, qw) |-M* (y, w) for some string w.
c) M rejects a string w iff (s, qw) |-M* (n, w) for some string w.
d) M decides a language L * iff for any string w *t:
i) if w L then M accepts w, and
ii) if w L then M rejects w.
e) A language L is decidable iff thewre is a TM M that decides it.
f) We define the set D to be the set of all decidable languages.
g) M semidecides L iff, for any string w M*:
i) w L M accepts w
ii) w L M does not accept w. M may reject or not halt.
h) A language L is semidecidable iff there is a Turing machine that semidecides it.
i) We define the set SD to be the set of all semidecidable languages.

image5.png
® Given a regular grammar G, construct an FSM M
such that:
L(G) = L(M)

e Given an FSM M, construct a regular grammar G
such that:
L(G) = L(M).

image6.png
Algorithms, Continued

e Converting between FSMs and regular expressions:
® Given a regular expression «, construct an FSM M

such that:

® Given an FSM M, construct a regular expression o
such that:
L(o) = L(M)

® Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropriate
FSM algorithm.

image7.png
Algorithms, Continued

® Converting between FSMs and regular expressions:
e Given a regular expression «, construct an FSM M
such that:

o Given an FSM M, construct a regular expression a.
such that:
L() = L(M)

e Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropriate
FSM algorithm.

image8.png
Summary of Algorithms

« Compute functions of languages defined as FSMs:

« Given FSMs M, and M, construct a FSM M; such that
L(Ms;) = L(M,) L L(M,).

« Given FSMs M, and M, construct a new FSM M, such that
L(Ms)= L(M) L(M;).

« Given FSM M, construct an FSM M* such that
L(M*) = (L(M))".

« Given a DFSM M, construct an FSM M* such that
L") = —L(M).

o Given two FSMs M, and M, construct an FSM M, such that
L(Ms)= L(M) ~ L(M,).

« Given two FSMs M, and M, construct an FSM M, such that
L(Ms)= L(M,) - L(M;).

« Given an FSM M, construct an FSM M such that
L(M") = (L(M))*

« Given an FSM M, construct an FSM M* that accepts
letsub(L(M)).

image9.png
® Given a regular grammar G, construct an FSM M
such that:
L(G) = L(M)

e Given an FSM M, construct a regular grammar G
such that:
L(G) = L(M).

image1.png
ndfsmtodfsm(M: NDFSM) =
1. For each state q in K, do:
1.1 Compute eps(q).

2.s'=eps(s)

3. Compute 3"
3.1 active-states = {s}.
328=0

3.3 While there exists some element Q of active-states for
which 3" has not yet been computed do:
For each character c in £, do:
new-state = &.
For each state g in Q do:
For each state p such that (g, ¢, p) € A do:
new-state = new-state eps(p).
Add the transition (g, ¢, new-state) to 5.
If new-state ¢ active-states then insert it.
4. K'= active-states.
5A={QeK:QnA%D}

image2.png
Algorithms, Continued

e Converting between FSMs and regular expressions:
® Given a regular expression «, construct an FSM M

such that:

® Given an FSM M, construct a regular expression o
such that:
L(o) = L(M)

® Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropriate
FSM algorithm.

image3.png
Algorithms, Continued

® Converting between FSMs and regular expressions:
e Given a regular expression «, construct an FSM M
such that:

o Given an FSM M, construct a regular expression a.
such that:
L() = L(M)

e Algorithms that implement operations on languages
defined by regular expressions: any operation that
can be performed on languages defined by FSMs can
be implemented by converting all regular expressions to
equivalent FSMs and then executing the appropriate
FSM algorithm.

image4.png
Summary of Algorithms

« Compute functions of languages defined as FSMs:

« Given FSMs M, and M, construct a FSM M; such that
L(Ms;) = L(M,) L L(M,).

« Given FSMs M, and M, construct a new FSM M, such that
L(Ms)= L(M) L(M;).

« Given FSM M, construct an FSM M* such that
L(M*) = (L(M))".

« Given a DFSM M, construct an FSM M* such that
L") = —L(M).

o Given two FSMs M, and M, construct an FSM M, such that
L(Ms)= L(M) ~ L(M,).

« Given two FSMs M, and M, construct an FSM M, such that
L(Ms)= L(M,) - L(M;).

« Given an FSM M, construct an FSM M such that
L(M") = (L(M))*

« Given an FSM M, construct an FSM M* that accepts
letsub(L(M)).

