MA/CSSE 474  Exam 3 Notation and Formulas page    Name ________________    (turn this in with your exam)
Unless specified otherwise, r,s,t,u,v,w,x,y,z are strings over alphabet ; while a, b, c, d are individual alphabet symbols.
[image: ]
DFSM notation: M= (K, , , s, A), where:
   K is a finite set of states,   is a finite alphabet
   s  K is start state,    A  K is set of accepting states
   : (K  )  K  is the transition function
Extend 's definition to : (K  *)  K by the recursive definition (q, )=q,    
 (q, xa) = ((q, x), a)
M accepts w iff  (s, w)  A.      L(M) = {w ∊ Σ* : δ(s, w) ∊ A}
Alternate notation:  
(q, w) is a configuration of M. (current state, remaining input)
The yields-in-one-step relation: |-M  :
	(q, w)  |-M  (q', w') iff  w = a w' for some symbol a  , and  (q, a) = q' 
The yields-in-zero-or-more-steps relation: |-M*  is the reflexive, transitive closure of |-M .
A computation by M is a finite sequence of configurations C0, C1, …, Cn for some n  0 such that:
    • C0 is an initial configuration,
    • Cn is of the form (q, ), for some state q  KM,Reg. exp. operator precedence (High to Low):
      parenthesized expressions, * and +, concatenation, union

    • i{0, 1, …, n-1} (Ci  |-M  Ci+1)
       M accepts w iff the state that is part of the last step in w is in A.  
A language L is regular if L=L(M) for some DFSM M.
In an NDFSM, the function  is replaced by the relation Δ:    Δ ⊆ (K  (  {}))  K
Equivalent strings relative to a language:  Given a language L, two strings w and x in L* are indistinguishable with respect to L, written wLx,  iff  z  * (xz  L iff yz  L).
[x] is a notation for "the equivalence class that contains the string x".
The construction of a minimal-state DSFM based on L:
M = (K, , , s, A), where K contains n states, one for each equivalence class of L. 
s = [], the equivalence class containing  under L,  
A = {[x] : x  L},     
([x], a) = [xa].  
Enumerator (generator) for a language: when it is asked, enumerator gives us the next element of the language.  Any given element of the language will appear within a finite amount of time.  It is allowed that some may appear multiple times.
Recognizer: Given a string s, recognizer halts and accepts s if s is in   the language. If not, recognizer either halts and rejects s or keeps running forever.  This is a semidecision procedure.  If recognizer is guaranteed to always halt and 
 (accept or reject) no matter what string it is given as input, it is a decision procedure.
The regular expressions over an alphabet  are the strings that can be obtained as follows:
1.  is a regular expression.Functions on languages:
firstchars(L) = {w : yL (y = cx, c  L, x  L*, and w  c*)}
chop(L) =  {w : xL  (x = x1cx2,  x1  L*,  x2  L*, c  L |x1| = |x2|, and w = x1x2)}
maxstring(L) =  {w: w  L,  z * (z    wz  L)}
mix(L) =   {w: x, y, z   (x  L,  x = yz,  |y| = |z|,  w = yzR)}
middle(L) = {x: y, z  * (yxz  L)}
alt(L) = {x: y,n (y  L , |y| = n, n > 0, y = a1…an,i  n (ai  ), and 
                    x = a1a3a5…ak, where k = (if n is even then n-1 else n))}



2.  is a regular expression.
3. Every element of  is a regular expression.
4. If  ,  are regular expressions, then so is .
5. If  ,  are regular expressions, then so is .
6. If  is a regular expression, then so is *.
7.  is a regular expression, then so is +.
8. If  is a regular expression, then so is ().

Recursive formula for constructing a regular expression from a DFSM: rijk is rij(k-1)  rik(k-1)(rkk(k-1))*rkj(k-1)
The set of regular languages is closed under complement, intersection, union, set difference, concatenation, Kleene * and +, reverse

Pumping Theorem and its contrapositive:
 The contrapositive form:
(k  1 				
   ( a string w  L
       (|w|  k and 
           ( x, y, z 
             (  (w = xyz ∧  |xy|  k ∧ y  ) → 
                 q  0 (xyqz is not in L) 
             ) )  )  ))
→ L is not regular 



Formally, if L is regular, then 
k  1 such that 
    ( strings w  L,  (|w|  k  → 	
         ( x, y, z (w = xyz, |xy|  k,  y  , and     
                 q  0 (xyqz is in L)))))


CFG definition: G = (V, Σ, R, S)
(vocabulary, terminals, rules, start symbol)
Derivation and language definition
One derivation step:  x G y iff ∃α,β,γ∈V*, A∈N ((x = A) ∧ (A   ∈ R) ∧ (y =   ))
G* is the reflexive, transitive closure of G
The language defined by a grammar: L(G) = {w  * : S G* w}
L is context-free if there is a context-free grammar G such that L = L(G).   
A parse tree, derived from a grammar G = (V, , R, S), is a rooted, ordered tree in which:
  Every leaf node is labeled with an element of   {},
  The root node is labeled S, 
  Every other node is labeled with an element of N, and
  If m is a non-leaf node labeled X and the (ordered) children of m are labeled x1, x2, …, xn, 
then R contains the rule     X  x1 x2, … xn.
Chomsky Normal Form, in which all rules are of one of the following two forms: 
X  a, where a  ,  or   X  BC, where B and C are elements of V - .
Greibach Normal Form, in which all rules are of the form X  a , where a   and   N*.
A grammar is ambiguous if some string it generates has two different parse trees
Equivalently, two different leftmost derivations, or two different rightmost derivations
A CFL is inherently ambiguous if every CFG that generates it is ambiguous.
PDA definition: M = (K, , , , s, A), 
                states, input alphabet, tape alphabet, transition relation, start state, accepting states
(q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2))  .  
accepting computation of M: (s, w, ) |-M* (q, , ), and  q  A
Top-down PDA from grammar: Production A  XYZ becomes (q, ε, A)  (q, XYZ)
(s, ε, ε)  (q, S)  [s is the start state of M).  A ={q} .  For each terminal,  (q, a, a)  (q, ε) 
Bottom-up PDA from grammar:  The shift transitions: ((p, c, ), (p, c)), for each c  .
The reduce transitions: ((p, , (s1s2…sn.)R), (p, X)), for each rule   X  s1s2…sn. in G. .
The finish-up transition: ((p, , S), (q, )).        A = {q}  
CFL closure: Union, Concatenation,  Kleene Star. Reverse. Intersection with regular language. 
Not closed under complement, intersection, set difference.  
We have CFL decision algorithms for membership, emptiness, finiteness.
Undecidable questions about CFLs:  Is L = *?   Is L regular?  Is L1 = L2? Is L1  L2? Is L1  L2 = ?
Is the complement of L context-free?  Is L1  L2 = ? Is L inherently ambiguous? Is G ambiguous?
Deterministic PDA M: M contains no pairs of transitions that compete with each other, and whenever M is in an accepting configuration it has no available moves.
A language L is deterministic context-free iff L$ can be accepted by some deterministic PDA.  
Formal TM definition.  A deterministic TM M is (K, , , , s, H):
i) K is a finite set of states;contrapositive of CFG Pumping Theorem:
If k  1 ( a string w  L, where |w|  
   ( u, v, x, y, z  
       ( (w = uvxyz, vy  , and  |vxy|  k) 
            implies
	 (  q  0 (uvqxyqz is not in L))))),
    then L is not context-free


ii)  is the input alphabet, which does not contain ☐;
iii)  is the tape alphabet, which must contain ☐ and have  as a subset.  
iv) s  K is the initial state;
v) H  K is the set of halting states;
vi)  is the transition function:  
(1) (K - H)                    to       K 	     	 	{, }
non-halting   tape         state  tape             direction to move
 state              char		   char	            (R or L)
Yields. (q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via , in one step.
[bookmark: _GoBack]|-M* is the reflexive, transitive closure of |-M.
Configuration C1 yields configuration C2 if:  C1  |-M*  C2.
A path through M is a sequence of configurations C0, C1, …, Cn for some n  0 such that C0 is the init config and  C0 |-M  C1 |-M  C2 |-M … |-M  Cn.
A computation by M is a path that halts.  If a computation is of length n (has n steps), we write:  C0 |-Mn  Cn

2) TMs as language recognizers.   Let M = (K, , , , s, {y, n}). 
a) 
b) M accepts a string w iff (s, qw) |-M*  (y, w) for some string w.
c) M rejects a string w iff   (s, qw) |-M*  (n, w) for some string w.
d) M decides a language L  * iff for any string w  *t:
i)         if w  L then M accepts w, and
ii)         if w  L then M rejects w.
e) A language L is decidable iff thewre is a TM M that decides it.  
f) We define the set D to be the set of all decidable languages.
g) M semidecides L iff, for any string w  M*:
i) w  L  M accepts w
ii) w  L  M does not accept w.  M may reject or  not halt.
h) A language L is semidecidable iff there is a Turing machine that semidecides it.  
i) We define the set SD to be the set of all semidecidable languages.  
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ndfsmtodfsm(M: NDFSM) =
1. For each state q in K, do:
1.1 Compute eps(q).

2.s'=eps(s)

3. Compute 3"
3.1 active-states = {s}.
328=0

3.3 While there exists some element Q of active-states for
which 3" has not yet been computed do:
For each character c in £, do:
new-state = &.
For each state g in Q do:
For each state p such that (g, ¢, p) € A do:
new-state = new-state  eps(p).
Add the transition (g, ¢, new-state) to 5.
If new-state ¢ active-states then insert it.
4. K'= active-states.
5A={QeK:QnA%D}
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