Name: \qquad Section (circle one): 01 (9:00) $02(10: 00) \quad 03(11: 00)$

This quiz, is due at the beginning of the second day of class. Please either print it and complete it by hand, or complete it electronically and then print it. A lot of this reading material should be familiar; some of Elaine Rich's notation may be different than you have seen before; you need to understand and use her notation. This quiz is mostly about definitions and notation. Please print 2-sided.

Chapter 2.

1. We consistently use the symbol Σ to denote the \qquad from which we compose strings.

According to the textbook's definition, can Σ ever be infinite?

According to the textbook's definition, can a string have infinite length?
Σ^{*} is the \qquad of all strings including the empty string whose symbols come from Σ.
2. Let Σ be $\{a, b, c\}$, and let $s \in \Sigma^{*} b e a b c b c c$. What is the value of each of the following expressions?

$|s|$

sa
s^{0}
s^{2}
s^{R}
\# ${ }_{\mathrm{b}}(\mathrm{s})$

How many different proper prefixes does s have?

How many different proper substrings does s have?
3. A (formal) language is a \qquad of strings over an \qquad .
4. Are \emptyset and $\{\varepsilon\}$ the same language? Explain briefly.
5. If the ordering of the symbols in $\{a, b, c\}$ is the order given here, arrange the following strings into lexicographic order, according to the textbook's definition: b ba $a b c$ cac $\varepsilon a b$
6. If $L_{1}=\{a, a b\}$ and $L_{2}=\{a, c, \varepsilon\}$, how many different strings are in the language $L_{1} L_{2}$? \qquad
7. If $L=\emptyset$, what is L^{*} ? \qquad
8. Give an example of a language L for which $L^{+} \neq L^{*}-\{\varepsilon\}$. $L=$ \qquad
9. Consider Exercise 2.2 On page 19. List here the letters (chosen from $\{a, b, c, d\}$) of the given strings that are in $\mathrm{L}_{1} \mathrm{~L}_{2}$: \qquad
2) Let $L_{1}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n}: n>0\right\}$. Let $L_{2}=\left\{\mathrm{c}^{n}: n>0\right\}$. For each of the following strings, state whether or not it is an element of $L_{1} L_{2}$:
a) ε.
b) aabbcc.
c) abbcc.
No.
Yes.
d) aabbccec.
Yes.
10. Can a language (set of strings over an alphabet) ever be uncountably infinite?
11. What are the possibilities for the cardinality of the set of all languages over a given alphabet ?

Answer: \qquad and \qquad
12. What is the relationship between $\{0\}^{*}\{1\}^{*}$ and $\{01\}^{*}$? (circle one)
$=\subset \supset$

Good problems to think about, but not to turn in (not yet, some may be assigned later):
Exercises 2.3, 2.5a, 2.7abde, 2.8

