Name:______ Section (circle one): 01 (9:00) 02 (10:00) 03 (11:00)

This quiz, is due at the beginning of the second day of class. Please either print it and complete it by hand, or complete it electronically and then print it. A lot of this reading material should be familiar; some of Elaine Rich's notation may be different than you have seen before; you need to understand and use her notation. This quiz is mostly about definitions and notation. **Please print 2-sided.**

Chapter 2.

1. We consistently use the symbol Σ to denote the _____ from which we compose strings.

According to the textbook's definition, can Σ ever be infinite?

According to the textbook's definition, can a string have infinite length?

 Σ^* is the _____ of all strings including the empty string whose symbols come from Σ .

2. Let Σ be {a, b, c}, and let $s \in \Sigma^*$ be abcbcc. What is the value of each of the following expressions?

|s|

sa

s⁰

s²

- s^R
- $\#_b(s)$

How many different proper prefixes does s have?

How many different proper substrings does s have?

3. A (formal) *language* is a _____ of strings over an _____.

- 4. Are \emptyset and $\{\varepsilon\}$ the same language? Explain briefly.
- 5. If the ordering of the symbols in $\{a, b, c\}$ is the order given here, arrange the following strings into lexicographic order, according to the textbook's definition: b ba abc cac ϵ ab

6. If $L_1 = \{a, ab\}$ and $L_2 = \{a, c, \epsilon\}$, how many *different* strings are in the language L_1L_2 ?

MA/CSSE 474 – Theory of ComputationQuiz and Reading Guide –submit before the end of Day 02

- 7. If L =Ø , what is L*? _____
- 8. Give an example of a language L for which $L^+ \neq L^* \{\epsilon\}$. L = _______
- 9. Consider Exercise 2.2 On page 19. List here the letters (chosen from {a, b, c, d})of the given strings that are in
 - Let L₁ = {aⁿbⁿ : n > 0}. Let L₂ = {cⁿ : n > 0}. For each of the following strings, state whether or not it is an element of L₁L₂:
 a) ε. No.
 b) aabbcc. Yes.
 c) abbcc. No.
 d) aabbcccc. Yes.
- 10. Can a language (set of strings over an alphabet) ever be uncountably infinite?
- 11. What are the possibilities for the cardinality of the set of all languages over a given alphabet ?

Answer:	and	

12. What is the relationship between $\{0\}^{1}^{*}$ and $\{01\}^{*}$? (circle one)

	_	_
=		
_	_	

Good problems to think about, but not to turn in (not yet, some may be assigned later): Exercises 2.3, 2.5a, 2.7abde, 2.8