474 HW 15 problems (highlighted problems are the ones to turn in)

The main assignment sheet has several Q and A from previous term's Piazza forums

<mark>17.11</mark>	
(#1) 6-3	11. Prove rigorously that the set of regular languages is a proper subset of D.
17.12 (#2) <mark>6-6-6-</mark>	12. In this question, we explore the equivalence between function computation and language recognition as performed by Turing machines. For simplicity, we will consider only functions from the nonnegative integers to the nonnegative integers (both encoded in binary). But the ideas of these questions apply to any computable function. We'll start with the following definition:
Note on 17.12a:	• Define the graph of a function f to be the set of all strings of the form $[x, f(x)]$, where x is the binary encoding of a nonnegative integer, and $f(x)$ is the binary encoding of the result of applying f to x.
$L = \{ [,], x \in \mathbb{N} \},$ where <x> means "the binar</x>	For example, the graph of the function <i>succ</i> is the set $\{[0,1], [1,10], [10,11], \dots\}$.
encoding of x" and <f(x)> means "the binary encoding of f(x)"</f(x)>	a. Describe in clear English an algorithm that, given a furing machine M that computes f , constructs a Turing machine M' that decides the language L that contains exactly the graph of f .
17.12b,c: Do these constructions for a general	b. Describe in clear English an algorithm that, given a Turing machine M that decides the language L that contains the graph of some function f, constructs a Turing machine M' that computes f.
function-computing TM, not specifically for the successor function.	c. A function is said to be partial if it may be undefined for some arguments. If we extend the ideas of this exercise to partial functions, then we do not require that the Turing machine that computes f halt if it is given some input x for which $f(x)$ is undefined. Then L (the mach leaves f in f) will write a trip of the first firs
(c) You might find the concept of "dovetailing" helpful for this problem. If you have not seen that technique before this	is undefined. Then L (the graph language for f), will contain entries of the form $[x, f(x)]$ for only those values of x for which f is defined. In that case, it may not be possible to decide L, but it will be possible to semidecide it. Do your constructions for parts (a) and (b) work if the function f is partial? If not, explain how you could modify them so they will work correctly. By "work", we mean:
reference will probably help: http://lambda-the- ultimate.org/node/322	 For part (a): Given a Turing machine that computes f(x) for all values on which f is defined, build a Turing machine that semidecides the language L that contains exactly the graph of f; For part (b): Given a Turing machine that semidecides the graph language
	of f (and thus accepts all strings of the form $[x, f(x)]$ when $f(x)$ is defined), build a Turing machine that computes f .
17.13	13. What is the minimum number of tapes required to implement a universal Turing machine?
(#3) 3	1. Church's Thesis makes the claim that all reasonable formal models of computa- tion are equivalent. And we showed in, Section 17.4, a construction that proved
18.1a (#4) <mark>9</mark>	that a simple accumulator/register machine can be implemented as a Turing ma- chine. By extending that construction, we can show that any computer can be im-
	in any notation that makes the algorithm clear) to answer a question means that the question is decidable by a Turing machine.
	Now suppose that we take an arbitrary question for which a decision proce- dure exists. If the question can be reformulated as a language, then the language will be in D iff there exists a decision procedure to answer the question. For each of the following problems your answers should be a precise description of an al-
18.1b	gorithm. It need not be the description of a Turing Machine:
(#3) 🧏	a. Let $L = \{ \langle M \rangle : M \text{ is a DFSM that doesn't accept any string containing an odd number of 1's} \}$. Show that L is in D.
	b. Let $L = \{ \langle E \rangle : E \text{ is a regular expression that describes a language that contains at least one string w that contains 111 as a substring}. Show that L is in D.$
Problem #6 A TM M has tape alphabet { \Box , a, b} (this is the order used in the encoding <m>).</m>	

- - (a) (6) Provide a transition diagram or a transition table for the TM M.
 - (b) (3) For each of the following outcomes of running M, provide a short string of a's and b's that is accepted by M, rejected by M, neither.