 		474 HW 15 problems (highlighted problems are the ones to turn in)
		The main assignment sheet has several Q and A from previous term’s Piazza forums
			17.11
(#1) 6-3
[bookmark: _GoBack]17.12
(#2) 6-6-6-6

17.13
(#3) 3
18.1a
(#4) 9

18.1b
(#5) 9

				
			[image:]Note on 17.12a:
L = { [<x>, <f(x)>], xℕ}, where <x> means "the binary encoding of x" and <f(x)> means "the binary encoding of f(x)"
17.12b,c: Do these constructions for a general function-computing TM, not specifically for the successor function.
(c) You might find the concept of "dovetailing" helpful for this problem. If you have not seen that technique before, this reference will probably help:

http://lambda-the-ultimate.org/node/322

			[image:]
[image:]
[image:]Problem #6 A TM M has tape alphabet { , a, b} (this is the order used in the encoding <M>).
<M> = (q00,a00,q00,a00, →), (q00,a10,q01,a10,→), (q00,a01,y10,a10, ←), (q01,a01,q00,a10,→), (q01,a10,n11,a01, ←)
(a) (6) Provide a transition diagram or a transition table for the TM M.
(b) (3) For each of the following outcomes of running M, provide a short string of a's and b's that is
accepted by M,
rejected by M,
neither.

image4.png
b. Let L = {< E>: Eis a regular expression that describes a language that con-
tains at least one string w that contains 111 as a substring}. Show that L is in D.

image1.png
11. Prove rigorously that the set of regular languages is a proper subset of D.
12. In this question, we explore the equivalence between function computation and
language recognition as performed by Turing machines. For simplicity, we will

consider only functions from the nonnegative integers to the nonnegative inte-
gers (both encoded in binary). But the ideas of these questions apply to any com-
putable function. We'll start with the following definition:

* Define the graph of a function fto be the set of all strings of the form [x. f(x)].
where x is the binary encoding of a nonnegative integer, and f(x) is the binary
encoding of the result of applying o x.

For example, the graph of the function succ s the set {[0.1].[1, 10].[10,11]. .. }.

a. Describe in clear English an algorithm that, given a Turing machine M that
computes f, constructs a Turing machine M’ that decides the language L that
contains exactly the graph of f.

b. Describe in clear English an algorithm that, given a Turing machine M that
decides the language L that contains the graph of some function f, constructs
a Turing machine M’ that computes f.

¢ A function is said to be partial if it may be undefined for some arguments. If we
extend the ideas of this exercise to partial functions, then we do not require that
the Turing machine that computes £ halt if it is given some input x for which f(x)
is undefined. Then L (the graph language for), will contain entries of the form
[x.fx)] for only those values of x for which fis defined. In that case. it may not be
possible to decide L, but it will be possible to semidecide it. Do your construc-
tions for parts (a) and (b) work if the function fis partial? If not, explain how you
could modify them so they will work correctly. By “work”, we mean:

« For part (a): Given a Turing machine that computes f(x) for all values on
which fis defined, build a Turing machine that semidecides the language L
that contains exactly the graph of f:

« For part (b): Given a Turing machine that semidecides the graph language
of f(and thus accepts all strings of the form[x, f{x)] when f(x) is defined),
build a Turing machine that computes f.

image2.png
13. What is the minimum number of tapes required to implement a universal Turing
machine?

image3.png
Church’s Thesis makes the claim that all reasonable formal models of computa-
tion are equivalent. And we showed in. Section 17.4, a construction that proved
that a simple accumulator/register machine can be implemented as a Turing ma-
chine. By extending that construction, we can show that any computer can be im-
plemented as a Turing machine. So the existence of a decision procedure (stated
in any notation that makes the algorithm clear) to answer a question means that
the question is decidable by a Turing machine.

Now suppose that we take an arbitrary question for which a decision proce-
dure exists. If the question can be reformulated as a language, then the language
will be in D iff there exists a decision procedure to answer the question. For cach
of the following problems, your answers should be a precise description of an al-
gorithm. It need not be the description of a Turing Machine:

a Let L = {<M>: M isa DFSM that doesn’t accept any string containing an

odd number of 1's}. Show that L is in D.

