474 HW 2 problems (highlighted problems are the ones to turn in)
[bookmark: _GoBack] [image:]
 [image:]3.1
3.2

3.4
3.5

3.6

4.1
4.2

4.3, 4.4

4.4c

5.2
5.2a
5.2b

 [image:]Two more problems, not from the textbook:
#14 and #15. They are described in detail on the assignment document, so I do not repeat them here.

 [image:]
image1.png
Consider the following problem: Given a digital circuit €, does C output 1 on all
inputs? Describe this problem as a language to be decided.

Using the technique we used in Example 3.8 to describe addition, describe square
root as a language recognition problem.

Consider the problem of encrypting a password. given an encryption key. Formu-
late this problem as a language recognition problem.

Consider the optical character recognition (OCR) problem: Given an array of
black and white pixels and a set of characters, determine which character best
matches the pixel array. Formulate this problem as a language recognition
problem.

Consider the language A"B"C" = {a’b"c" 0}, discussed in Section 3.3.3.
We might consider the following design for a PDA to accept A™BC™ As cach a

image2.png
is read, push two a’s onto the stack. Then pop one a for cach b and one a for cach
c.If the input and the stack come out even, accept. Otherwise reject. Why doesn’t
this work?

Define a PDA-2 to be a PDA with two stacks (instead of one). Assume that the
stacks can be manipulated independently and that the machine accepts iff it is
in an accepting state and both stacks are empty when it runs out of input. De-
scribe the operation of a PDA-2 that accepts A'BC" = {a"h"c":n = 0}.
(Note: We will sce, in Section 17.5.2, that the PDA-2 is equivalent to the Turing
machine in the sense that any language that can be accepted by one can be ac-
cepted by the other.)

image3.png
Describe in clear English or pseudocode a decision procedure to answer the
question, “Given a list of integers N and an individual integer n,is there any ele-
ment of N that s a factor of
Given a Java program p and the input 0, consider the question, “Does p ever out-
put anythin,
a. Describe a semidecision procedure that answers this question.

b. Is there an obvious way to turn your answer to part a into a decision

procedure?
Recall the function chop (L), defined in Example 4.10. Let L = {we {a, b}*:
w = wR}. What is chop (L)?
Are the following sets closed under the following operations? Prove your answer.
If asetis not closed under the operation. what is its closure under the operation?
a. L = {we {a,b}* :w ends ina} under the function odds. defined on strings
as follows: odds(s) = the string that is formed by concatenating together all
of the odd numbered characters of s. (Start numbering the characters at 1.)
For example, odds(ababbbb) = aabb.

b. FIN (the set of finite languages) under the function oddsL. defined on lan-
guages as follows:

oddsL (L) = {w: 3xe L (w = odds (x))}.

c. INF (the set of infinite languages) under the function oddsL.
d. FIN under the function maxstring. defined in Example 8.22.
e. INF under the function maxstring.

image4.png
2. Show a DFSM to accept each of the following languages:

a
b,
c

B

o

L

{we {a,b}*: every ain w is immediately preceded and followed by b}.
{we {a,b}*:w does not end in ba}.

{we {0,1}* : w corresponds to the binary encoding, without leading 0's, of nat-
ural numbers that are evenly divisible by 4}.

. {we {0.1}* : wcorresponds to the binary encoding, without leading 0's, of nat-

ural numbers that are powers of 4}.

. {w= {0-9}* 1 w corresponds to the decimal encoding, without leading 0°s. of an

odd natural number}.

{we {0,1}* : w has 001 as a substring}.

{we {0,1}*: w does not have 001 as a substring}.

{we {a,b}*: w has bbab as a substring}.

{we {a,b}* : w has ncither ab nor bb as a substring}.

{we {a,b}*: w has both aa and bb as a substrings}.

{we {a,b}*: w contains at least two b’s that are not immediately followed
byana}.

{we {0,1}*: w has no more than one pair of consecutive 0's and no more
than one pair of consecutive 1's}.

m. {we {0.1}*: none of the prefixes of w ends in 0}.

n.

{we {a,b}*: (#5(w) + 2-#y(w)) =50}. (¥5(w) is the number of a’s in w).

