

Your Questions?

- Previous class days' material
- Reading Assignments
- HW 14 problems
- Exam 3
- Anything else

TMs are complicated

... and very low-level!

We need higher-level "abbreviations".

- Macros

[^0]
Checking Inputs and Combining Machines

Machines to:

- Check the tape and branch based on what character we see, and
- Combine the basic machines to form larger ones.

To do this, we need two forms:

- $M_{1} M_{2}$
- $M_{1} \xrightarrow{\text { <condition> }} M_{2}$

[^1]

```
&
```


More Search Machines

L_{a}
 Find the first occurrence of a to

``` the left of the current square.
Find the first occurrence of a or b to the right of the current square.
\begin{tabular}{|ll}
\(\mathrm{L}_{\mathrm{a}, \mathrm{b}} \xrightarrow{\mathrm{a}} M_{1}\) & \begin{tabular}{l} 
Find the first occurrence of a or b \\
to the left of the current square, \\
then go to \(M_{1}\) if the detected \\
character is \(\mathrm{a} ;\) go to \(M_{2}\) if the \\
detected character is b.
\end{tabular} \\
\(\mathrm{b}_{2}\)
\end{tabular}
\(\mathrm{L}_{x \leftarrow a, b} \quad\) Find the first occurrence of a or b to the left of the current square and set \(x\) to the value found.
\(\mathrm{L}_{x \leftarrow \mathrm{a}, \mathrm{b}} \mathrm{R} x\)
Find the first occurrence of a or b to the left of the current square, set \(x\) to the value found, move one square to the right, and write \(x\) (a or b).
```


Exercise

Initial input on the tape is an integer written in binary, most significant bit first (110 represents 6).

Design a TM that replaces the binary representation of n by the binary representation of $n+1$.

Two Flavors of TMs

1. Recognize a language
2. Compute a function

Turing Machines as Language Recognizers

Let $M=(K, \Sigma, \Gamma, \delta, s,\{y, n\})$.

- M accepts a string w iff ($s, \underline{\text { 区 }} w) \mid-{ }_{-}^{*} \quad\left(y, w^{\prime}\right)$ for some string w^{\prime} (that includes an underlined character).
- M rejects a string w iff $\left.(s, \underline{\notin} w)\right|_{-}{ }^{*}\left(n, w^{\prime}\right)$ for some string w^{\prime}.
M decides a language $L \subseteq \Sigma^{*}$ iff:
For any string $w \in \Sigma^{*}$ it is true that:
if $w \in L$ then M accepts w, and
if $w \notin L$ then M rejects w.
A language L is decidable iff there is a Turing machine M that decides it. In this case, we will say that L is in \boldsymbol{D}.

A Deciding Example

$A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} C^{n}: n \geq 0\right\}$

Semideciding a Language

Let Σ_{M} be the input alphabet to a TM M. Let $L \subseteq \Sigma_{M}{ }^{*}$.
M semidecides L iff, for any string $w \in \Sigma_{M}{ }^{*}$:

- $w \in L \rightarrow M$ accepts w
- $w \notin L \rightarrow M$ does not accept w. $\quad M$ may either: reject or fail to halt.

A language L is semidecidable iff there is a Turing machine that semidecides it. We define the set SD to be the set of all semidecidable languages.

Example of Semideciding

Let $L=b^{*} a(a \cup b)^{*}$
We can build M to semidecide L :

1. Loop
1.1 Move one square to the right. If the character under the read head is an a, halt and accept.

In our macro language, M is:

Example of Deciding the same Language

$L=b^{*} a(a \cup b)^{*}$. We can also decide L :
Loop:
1.1 Move one square to the right.
1.2 If the character under the read/write head is an a, halt and accept.
1.3 If it is \notin, halt and reject.

In our macro language, M is:

TM that Computes a Function

Let $M=(K, \Sigma, \Gamma, \delta, s,\{h\})$.
Define $M(w)=z$ iff $(s, \underline{\underline{E}} w) \mid-M^{*}(h, \underline{\text { 区 }} z)$. Notice that the TM's function
Let $\Sigma^{\prime} \subseteq \Sigma$ be M 's output alphabet. computes with Let f be any function from Σ^{*} to $\Sigma^{\prime *}$.
M computes f iff, for all $w \in \Sigma^{*}$: strings (Σ^{\star} to $\Sigma^{\prime *}$), not directly with numbers.

- If w is an input on which f is defined: $\quad M(w)=f(w)$.
- Otherwise $M(w)$ does not halt.

A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.

Note that this is different than our common use of recursive.

Example of Computing a Function

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Let $f(w)=w w$.

Define the copy machine C :

Also use the S_{\leftarrow} machine:

Then the machine to compute f is just $\quad>C S_{\leftarrow} L_{k}$

More details next slide

Example of Computing a Function

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Let $f(w)=w w$.

Define the copy machine C:

Then use the S_{\leftarrow} machine:
ÆUEWた $\quad \rightarrow \quad$ ÆUWE
Then the machine to compute f is just $\quad>C S_{\leftarrow} L_{\text {}}$

Computing Numeric Functions

For any positive integer k, value $\boldsymbol{k}_{\boldsymbol{k}}(\boldsymbol{n})$ returns the nonnegative integer that is encoded, base k, by the string n.

For example:

- value $_{2}(101)=5$.
- value ${ }_{8}(101)=65$.

TM M computes a function \boldsymbol{f} from \mathbb{N}^{m} to \mathbb{N} iff, for some k :

$$
\text { value }_{k}\left(M\left(n_{1} ; n_{2} ; \ldots n_{m}\right)\right)=f\left(\text { value }_{k}\left(n_{1}\right), \ldots \text { value }_{k}\left(n_{m}\right)\right)
$$

Note that the semicolon serves to separate the representations of the arguments

[^0]:
 A Macro language for Turing Machines
 You need to learn this simple
 (1) Define some basic machines language. I will use it and I expect you to use it on HW and tests (for

 - Symbol writing machines exams l'll give you a handout with the details).

 For each $x \in \Gamma$, define M_{x}, written as just x, to be a machine that writes x. Read-write head ends up in original position.

 - Head moving machines
 $\mathrm{R}: \quad$ for each $x \in \Gamma, \delta(s, x)=(h, x, \rightarrow)$
 L: for each $x \in \Gamma, \delta(s, x)=(h, x, \leftarrow)$
 - Machines that simply halt:
 h, which simply halts (don't care whether it accepts).
 n, which halts and rejects.
 y, which halts and accepts.

[^1]: 59:8

 ## Turing Machines Macros Cont'd

 Example:

 - Start in the start state of M_{1}.
 - Compute until M_{1} reaches one of its halt states, which are not halt states in the combined machine.
 - Examine the tape and take the appropriate transition.
 - Start in the start state of the next machine, etc.
 - Halt if any component reaches a halt state and has no place to go.
 - If any component fails to halt, then the entire machine may fail to halt.

