A Macro language for Turing Machines

(1) Define some basic machines

You need to learn this simple language. I will use it and I expect you to use it on HW and tests (for exams I'll give you a handout with the details).

Symbol writing machines

For each $x \in \Gamma$, define M_{x^1} written as just x, to be a machine that writes x. Read-write head ends up in original position.

• Head moving machines

R: for each $x \in \Gamma$, $\delta(s, x) = (h, x, \rightarrow)$ L: for each $x \in \Gamma$, $\delta(s, x) = (h, x, \leftarrow)$

• Machines that simply halt:

h, which simply halts (don't care whether it accepts).

n, which halts and rejects.

y, which halts and accepts.

Checking Inputs and Combining Machines

Machines to:

- Check the tape and branch based on what character we see, and
- Combine the basic machines to form larger ones.

To do this, we need two forms:

 $\bullet M_1 M_2$

• M_1 < condition> M_2

Turing Machines Macros Cont'd

Example:

$$>M_1$$
 \longrightarrow M_2 \downarrow M_2

- Start in the start state of M_1 .
- Compute until M₁ reaches one of its halt states, which are not halt states in the combined machine.
- Examine the tape and take the appropriate transition.
- Start in the start state of the next machine, etc.
- Halt if any component reaches a halt state and has no place to go.
- If any component fails to halt, then the entire machine may fail to halt.

を	Blank/Non-	blank Search Mach	ines
P. 10.000	> R ¬ ¬	Find the first blank square to the right of the current square.	$R_{\scriptscriptstyle{\mathbb{Z}}}$
XOVA MANAGEMENT	> L ¬□	Find the first blank square to the left of the current square.	$L_{\scriptscriptstyle{E}}$
	> R	Find the first nonblank square to the right of the current square.	$R_{\!-\!\scriptscriptstyle{\mathbb{E}}}$
	> L	Find the first nonblank square to the left of the current square	$L_{\neg \mathbb{Z}}$
1000			

を整	An Example		
2000	Input: Output:	$\underline{\underline{R}} W W \in \{1\}^*$ $\underline{\underline{R}} W^3$	
000/42	Example:	<u>E</u> 111EEEEEEEEEEEEE	
	M	$= \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Mo	ore Search Machines
L _a	Find the first occurrence of a to the left of the current square.
$R_{a,b}$	Find the first occurrence of a or b to the right of the current square.
L _{a,b} a_M ₁ b M ₂	Find the first occurrence of a or b to the left of the current square, then go to M_1 if the detected character is a; go to M_2 if the detected character is b.
L _{x←a,b}	Find the first occurrence of a or b to the left of the current square and set x to the value found.
$L_{x\leftarrow a,b}Rx$	Find the first occurrence of a or b to the left of the current square, set x to the value found, move one square to the right, and write x (a or b).