

$\left\{x c y: x, y \in\{0,1\}^{*}\right.$ and $\left.x \neq y\right\}$

- SURPRISINGLY, it is Context-free! HW 13. Here is the beginning of a proof:
- We can build a PDA M to accept L. All M has to do is to find one way in which x and y differ.
- M starts by pushing a bottom of stack marker \# onto the stack.
- Then it nondeterministically chooses to go to state 1 or 2.

PDA Variations?

- In HW12, we see that acceptance by "accepting state only" is equivalent to acceptance by empty stack and accepting state.
Equivalent In this sense: Given a language L , there is a PDA that accepts L by accepting state and empty stack iff there is a PDA that accepts L by accepting state only.
- FSM plus two stacks?
- FSM plus FIFO queue (instead of stack)?

Closure Theorems for Context-Free Languages

The context-free languages are closed under:

- Union
- Concatenation

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$, and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$
generate languages L_{1} and L_{2}

- Kleene star
- Reverse

Formal details are on next 4 slides; we will do them informally instead.

Closure Under Union

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$, and
$G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$.
Assume that G_{1} and G_{2} have disjoint sets of nonterminals, not including S.

Let $L=L\left(G_{1}\right) \cup L\left(G_{2}\right)$.
We can show that L is CF by exhibiting a CFG for it:

$$
\begin{aligned}
G= & \left(V_{1} \cup V_{2} \cup\{S\}, \Sigma_{1} \cup \Sigma_{2},\right. \\
& R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1}, S \rightarrow S_{2}\right\}, \\
& S)
\end{aligned}
$$

Closure Under Concatenation

Let $G_{1}=\left(V_{1}, \Sigma_{1}, R_{1}, S_{1}\right)$, and $G_{2}=\left(V_{2}, \Sigma_{2}, R_{2}, S_{2}\right)$.

Assume that G_{1} and G_{2} have disjoint sets of nonterminals, not including S.

Let $L=L\left(G_{1}\right) L\left(G_{2}\right)$.
We can show that L is CF by exhibiting a CFG for it:

$$
\begin{aligned}
G= & \left(V_{1} \cup V_{2} \cup\{S\}, \Sigma_{1} \cup \Sigma_{2},\right. \\
& R_{1} \cup R_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}, \\
& S)
\end{aligned}
$$

Closure Under Kleene Star

Let $G=\left(V, \Sigma, R, S_{1}\right)$.
Assume that G does not have the nonterminal S.
Let $L=L(G)^{*}$.
We can show that L is CF by exhibiting a CFG for it:

$$
\begin{aligned}
G= & \left(V_{1} \cup\{S\}, \Sigma_{1},\right. \\
& R_{1} \cup\left\{S \rightarrow \varepsilon, S \rightarrow S S_{1}\right\}, \\
& S)
\end{aligned}
$$

Closure Under Reverse

$L^{R}=\left\{w \in \Sigma^{*}: w=x^{R}\right.$ for some $\left.x \in L\right\}$.
Let $G=(V, \Sigma, R, S)$ be in Chomsky normal form.
Every rule in G is of the form $X \rightarrow B C$ or $X \rightarrow a$, where X, B, and C are elements of $V-\Sigma$ and $a \in \Sigma$.

- $X \rightarrow a: L(X)=\{a\}$.
$\{a\}^{R}=\{a\}$.
- $X \rightarrow B C: L(X)=L(B) L(C)$.
$(L(B) L(C))^{R}=L(C)^{R} L(B)^{R}$.
Construct, from G, a new grammar G^{\prime}, such that $L\left(G^{\prime}\right)=L^{R}$: $G^{\prime}=\left(V_{G}, \Sigma_{G}, R^{\prime}, S_{G}\right)$, where R^{\prime} is constructed as follows:
- For every rule in G of the form $X \rightarrow B C$, add to R^{\prime} the rule $X \rightarrow C B$.
- For every rule in G of the form $X \rightarrow a$, add to R^{\prime} the rule $X \rightarrow a$.

Closure Under Intersection

The context-free languages are not closed under intersection:

The proof is by counterexample. Let:

$$
\begin{array}{ll}
L_{1}=\left\{a^{n} b^{n} c^{m}: n, m \geq 0\right\} & l^{*} \text { equal a's and b's. } \\
L_{2}=\left\{a^{m} b^{n} c^{n}: n, m \geq 0\right\} & l^{*} \text { equal b's and c's. }
\end{array}
$$

Both L_{1} and L_{2} are context-free, since there exist straightforward context-free grammars for them.

But now consider:

$$
\begin{aligned}
L & =L_{1} \cap L_{2} \\
& =\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}
\end{aligned}
$$

Recall: Closed under union but not closed under intersection implies not closed under complement.
And we saw a specific example of a CFL whose complement was not CF.

Closure Under Complement

$L_{1} \cap L_{2}=\neg\left(\neg L_{1} \cup \neg L_{2}\right)$
The context-free languages are closed under union, so if they were closed under complement, they would be closed under intersection (which they are not).

Alternative approach:

In a previous class, we demonstrated that the complement of $L=A^{n} B^{n} C^{n}$ is context-free, while L itself is not context-free,

The Intersection of a Context-Free Language and a Regular Language is Context-Free

$L=L\left(M_{1}\right)$, a PDA $=\left(K_{1}, \Sigma, \Gamma_{1}, \Delta_{1}, s_{1}, A_{1}\right)$.
$R=L\left(M_{2}\right)$, a deterministic $\mathrm{FSM}=\left(K_{2}, \Sigma, \delta, \mathrm{~s}_{2}, A_{2}\right)$.
We construct a new PDA, M_{3}, that accepts $L \cap R$ by simulating the parallel execution of M_{1} and M_{2}.
$M=\left(K_{1} \times K_{2}, \Sigma, \Gamma_{1}, \Delta,\left[s_{1}, s_{2}\right], A_{1} \times A_{2}\right)$.
Insert into Δ :
For each rule $\left(\left(q_{1}, a, \beta\right),\left(p_{1}, \gamma\right)\right)$ in Δ_{1}, and each rule $\left(q_{2}, a, p_{2}\right)$ in δ, Δ contains $\quad\left(\left(\left[q_{1}, q_{2}\right] a, \beta\right),\left(\left[p_{1}, p_{2}\right], \gamma\right)\right)$.
For each rule $\left(\left(q_{1}, \varepsilon, \beta\right),\left(p_{1}, \gamma\right)\right.$ in Δ_{1}, and each state q_{2} in K_{2},

I use square brackets for ordered pairs of states from $K_{1} \times K_{2}$, to distinguish them from the tuples that are part of the notations for transitions in M_{1}, M_{2}, and M .
Δ contains $\quad\left(\left(\left[q_{1}, q_{2}\right], \varepsilon, \beta\right),\left(\left[p_{1}, q_{2}\right], \gamma\right)\right)$.
This works because: we can get away with only one stack.

The Difference between a Context-Free Language and a Regular Language is Context-Free

Theorem: The difference $\left(L_{1}-L_{2}\right)$ between a context-free language L_{1} and a regular language L_{2} is context-free.

Proof: $L_{1}-L_{2}=L_{1} \cap \neg L_{2}$.
If L_{2} is regular then so is $\neg L_{2}$.
If L_{1} is context-free, so is $L_{1} \cap \neg L_{2}$.

Halting

It is possible that a PDA may

- not halt,
- never finish reading its input.

Let $\Sigma=\{a\}$ and consider $M=$

$L(M)=\{a\}:(1, \mathrm{a}, \varepsilon)|-(2, \mathrm{a}, \mathrm{a})|-(3, \varepsilon, \varepsilon)$
On any other input except a:

- M will never halt, or
- M will never finish reading its input unless its input is ε.

Nondeterminism and Decisions

1. There are context-free languages for which no deterministic PDA exists.
2. It is possible that a PDA may

- not halt,
- not ever finish reading its input.
- require time that is exponential in the length of its input.

3. There is no PDA minimization algorithm. It is undecidable whether a PDA is minimal.

Solutions to the Problem

- For NDFSMs:
- Convert to deterministic, or
- Simulate all paths in parallel.
- For NDPDAs:
- No general solution.
- Formal solutions usually involve changing the grammar.
- Such as Chomsky or Greibach Normal form.
- Practical solutions:
- Preserve the structure of the grammar, but
- Only work on a subset of the CFLs.
- LL(k), LR(k) (compilers course)

Deterministic PDAs

A PDA M is deterministic iff:

- Δ_{M} contains no pairs of transitions that compete with each other, and
- Whenever M is in an accepting configuration it has no available moves.
M can choose between accepting and taking the ε-transition, so it is not deterministic.

Deterministic CFLs (very quick overview without many details)

A language L is deterministic context-free iff $L \$$ can be accepted by some deterministic PDA.

Why \$?
Let $L=a^{*} \cup\left\{a^{n} b^{n}: n>0\right\}$.

A DPDA for $L \$$

$$
L=a^{*} \cup\left\{a^{n} b^{n}: n>0\right\} .
$$

DCFL Properties（skip the details）

The Deterministic CF Languages are closed under complement．
The Deterministic CF Languages are not closed under intersection or union．

[^0]

Context-Free Languages Over a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter alphabet is regular.

Proof: Requires Parikh's Theorem, which we are skipping

Chapter 14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L ?
Two approaches:

- If L is context-free, then there exists some context-free grammar G that generates it. Try derivations in G and see whether any of them generates w.

Problem (later slide):

- If L is context-free, then there exists some PDA M that accepts it. Run M on w.

Problem (later slide):

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L ?
Two approaches:

- If L is context-free, then there exists some context-free grammar G that generates it. Try derivations in G and see whether any of them generates w.
$S \rightarrow S T \mid a \quad$ Try to derive aaa

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L ?

- If L is context-free, then there exists some PDA M that accepts it. Run M on w.

Problem:

Esing a Grammar

decideCFLusingGrammar(L: CFL, w: string $)=$

1. If given a PDA, build G so that $L(G)=L(M)$.
2. If $w=\varepsilon$ then if S_{G} is nullable then accept, else reject.
3. If $w \neq \varepsilon$ then:
3.1 Construct G^{\prime} in Chomsky normal form such that $L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$.
3.2 If G^{\prime} derives w, it does so in \qquad steps. Try all derivations in G^{\prime} of \qquad steps. If one of them derives w, accept. Otherwise reject.

How many steps (as a function of $|w|$) in the derivation of w from CNF grammar G' ?

[^1]
Emptiness

Given a context-free language L, is $L=\varnothing$?
decideCFLempty(G: context-free grammar) =

1. Let $G^{\prime}=$ removeunproductive(G).
2. If S is not present in G^{\prime} then return True
else return False.

Finiteness

Given a context-free language L, is L infinite?
decideCFLinfinite(G: context-free grammar) =

1. Lexicographically enumerate all strings in Σ^{*} of length greater than b^{n} and less than or equal to $b^{n+1}+b^{n}$.
2. If, for any such string w, decideCFL(L, w) returns True then return True. L is infinite.
3. If, for all such strings w, decideCFL(L, w) returns False then return False. L is not infinite.

Why these bounds?

Some Undecidable Questions about CFLs

- Is $L=\Sigma^{*}$?
- Is the complement of L context-free?
- Is L regular?
- Is $L_{1}=L_{2}$?
- Is $L_{1} \subseteq L_{2}$?
- Is $L_{1} \cap L_{2}=\varnothing$?
- Is L inherently ambiguous?
- Is G ambiguous?

```
新洛
    Regular Languages
- regular exprs.
    - or
- regular grammars
- = DFSMs
- recognize
- minimize FSMs
- closed under:
    - concatenation
    * union
    -Kleene star
    * complement
    - intersection
- pumping theorem
    section w/ reg. langs
    - pumping theorem
- D = ND
```


Regular and CF Languages

```
\begin{tabular}{|c|c|}
\hline Regular Languages & Context-Free Languages \\
\hline \begin{tabular}{l}
- regular exprs. \\
or \\
- regular grammars
\end{tabular} & - context-free grammars \\
\hline - = DFSMs & \(\bullet=\) NDPDAs \\
\hline - recognize & - parse \\
\hline - minimize FSMs & \begin{tabular}{l}
- try to find unambiguous grammars \\
- try to reduce nondeterminism in PDAs \\
- find efficient parsers
\end{tabular} \\
\hline - closed under: & - closed under: \\
\hline - concatenation & - concatenation \\
\hline - union & - union \\
\hline -Kleene star & -Kleene star \\
\hline - complement & \\
\hline - intersection & - intersection w/ reg. langs \\
\hline - pumping theorem & - pumping theorem \\
\hline - D = ND & - \(\mathrm{D} \neq \mathrm{ND}\) \\
\hline
\end{tabular}
```


Turing Machines (TMs)

We want a new kind of automaton:

- powerful enough to describe all computable things, unlike FSMs and PDAs.
- simple enough that we can reason formally about it like FSMs and PDAs, unlike real computers.

Goal: Be able to prove things about what can and cannot be computed.

A Formal Definition

A (deterministic) Turing machine M is $(K, \Sigma, \Gamma, \delta, s, H)$:

- K is a finite set of states;
- Σ is the input alphabet, which does not contain \nVdash;
- Γ is the tape alphabet,
which must contain \notin and have Σ as a subset.
- $s \in K$ is the initial state;
- $H \subseteq K$ is the set of halting states;
- δ is the transition function:

| $(K-H)$ | \times | Γ | to | $K \times$ | Γ | \times |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |$\quad\{\rightarrow, \leftarrow\}$

Notes on the Definition

1. The input tape is infinite in both directions.
2. δ is a function, not a relation. So this is a definition for deterministic Turing machines.
3. δ must be defined for all (state, tape symbol) pairs unless the state is a halting state.
4. Turing machines do not necessarily halt (unlike FSM's and most PDAs). Why? To halt, they must enter a halting state. Otherwise they loop.
5. Turing machines generate output, so they can compute functions.

An Example

M takes as input a string in the language:

$$
\left\{a^{\prime} b^{j}, 0 \leq j \leq i\right\},
$$

and adds b's as required to make the number of b's equal the number of a's.
The input to M will look like this:

The output should be:

Notes on Programming

The machine has a strong procedural feel, with one phase coming after another.

There are common idioms, like scan left until you find a blank

There are two common ways to scan back and forth marking things off.

Often there is a final phase to fix up the output.
Even a very simple machine is a nuisance to write.

[^0]: 䠌
 Theorem：There exist CLFs that are not deterministic．
 Proof：By example．Let $L=\left\{a^{i} b^{j} c^{k}, i \neq j\right.$ or $\left.j \neq k\right\}$ ．L is CF．If L is DCF then so is：

 $$
 \begin{aligned}
 L^{\prime}= & -L . \\
 = & \left\{\mathrm{a}^{i} \mathrm{~b}^{k}, i, j, k \geq 0 \text { and } i=j=k\right\} \cup \\
 & \left\{W \in\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\}^{*}: \text { the letters are out of order }\right\} .
 \end{aligned}
 $$

 But then so is：

 $$
 \begin{aligned}
 L^{\prime \prime} & =L^{\prime} \cap a^{*} b^{*} c^{*} . \\
 & =\left\{a^{n} b^{n} c^{n}, n \geq 0\right\} .
 \end{aligned}
 $$

 But it isn＇t．So L is CF but not DCF．
 This simple fact poses a real problem for the designers of efficient context－free parsers．

 Solution：design a language that is deterministic． $\operatorname{LL}(\mathrm{k})$ or $\mathrm{LR}(\mathrm{k})$ ．

[^1]: ## Using a Grammar

 decideCFLusingGrammar(L: CFL, w: string) =

 1. If given a PDA, build G so that $L(G)=L(M)$.
 2. If $w=\varepsilon$ then if S_{G} is nullable then accept, else reject.
 3. If $w \neq \varepsilon$ then:
 3.1 Construct G^{\prime} in Chomsky normal form such that $L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$.
 3.2 If G^{\prime} derives w, it does so in $2 \cdot|w|-1$ steps. Try all derivations in G^{\prime} of $2 \cdot|w|-1$ steps. If one of them derives w, accept. Otherwise reject.

 Alternative $\mathrm{O}\left(\mathrm{n}^{3}\right)$ algorithm: CKY.
 a.k.a. CYK.

