

Let $G_1 = (V_1, \Sigma_1, R_1, S_1)$, and $G_2 = (V_2, \Sigma_2, R_2, S_2)$.

Assume that G_1 and G_2 have disjoint sets of nonterminals, not including *S*.

Let $L = L(G_1)L(G_2)$.

A CONTRACTOR OF THE OWNER OF THE OWNER

We can show that *L* is CF by exhibiting a CFG for it:

Real Real	Closure Under Intersection						
0.000 a 200	The context-free languages are not closed under intersection:						
X	The proof is by counterexample. Let:						
	$ L_1 = \{ a^n b^n c^m : n, m \ge 0 \} /* \text{ equal a's} \\ L_2 = \{ a^m b^n c^n : n, m \ge 0 \} /* \text{ equal b's} $						
	Both L_1 and L_2 are context-free, since there exist straightforward context-free grammars for them.						
	But now consider: $L = L_1 \cap L_2$ $= \{a^n b^n c^n: n \ge 0\}$ And we saw a	d under union but not intersection implies der complement. specific example of a omplement was not					

Nondeterministic CFLs Theorem: There exist CLFs that are not deterministic. XXV ... **Proof:** By example. Let $L = \{a^{i}b^{j}c^{k}, i \neq j \text{ or } j \neq k\}$. L is CF. If L is DCF then so is: $L' = \neg L$. = { $a^{i}b^{j}c^{k}$, *i*, *j*, $k \ge 0$ and i = j = k} \cup $\{w \in \{a, b, c\}^*$: the letters are out of order}. していたかの But then so is: $L'' = L' \cap a^*b^*c^*$. $= \{a^{n}b^{n}c^{n}, n \ge 0\}.$ But it isn't. So L is CF but not DCF. This simple fact poses a real problem for the designers of efficient context-free parsers. Solution: design a language that is deterministic. LL(k) or LR(k).

Some Undecidable Questions about CFLs • Is $L = \Sigma^*$? • Is the complement of *L* context-free? • Is *L* regular? • Is $L_1 = L_2$? • Is $L_1 \subseteq L_2$? • Is $L_1 \cap L_2 = \emptyset$? • Is *L* inherently ambiguous?

• Is G ambiguous?

ALA #	An Example										
a a a	<i>M</i> takes as input a string in the language:										
000	$\{a^{i}b^{j}, 0\leq j\leq i\},$										
	and adds b's as required to make the number of b's equal the number of a's.										
	The input to <i>M</i> will look like this:										
			a	a	a	b					
		1									
	The output should be:										
	. a a a b b .										
							t				

