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CFL Hierarchy
CFL Decision Problems

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days' 

material

• Reading Assignments

• HW 12 or 13 problems
• Anything else

I have included some 
slides online that we will 
not have time to do in 
class, but may be helpful 
to you anyway.
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• SURPRISINGLY, it is Context-free!  HW 13. Here is 
the beginning of a proof:  

• We can build a PDA M to accept L.  All M has to do 
is to find one way in which x and y differ.  

• M starts by pushing a bottom of stack marker # onto 
the stack.  

• Then it nondeterministically chooses to go to state 1 
or 2. 

{xcy : x, y  {0, 1}* and x  y}

● In HW12, we see that acceptance by "accepting state 
only" is equivalent to acceptance by empty stack and 
accepting state. 
Equivalent In this sense:  Given a language L, there is 

a PDA that accepts L by accepting state and empty 
stack iff there is a PDA that accepts L by accepting 
state only.

● FSM plus two stacks?

● FSM plus FIFO queue (instead of stack)?

PDA  Variations?
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Closure Theorems for Context-Free Languages

The context-free languages are closed under:

● Union

● Concatenation

● Kleene star

● Reverse

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2) 

generate languages L1 and L2

Formal details are on next 4 slides; 
we will do them informally instead.

Closure Under Union

Let G1 = (V1, 1, R1, S1), and
G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)  L(G2).

We can show that L is CF by exhibiting a CFG for
it:  

G = (V1  V2  {S}, 1  2, 
R1  R2  {S  S1, S  S2}, 
S) 
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Closure Under Concatenation
Let G1 = (V1, 1, R1, S1), and

G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of nonterminals,
not including S.

Let L = L(G1)L(G2).

We can show that L is CF by exhibiting a CFG for it:

G = (V1  V2  {S}, 1  2, 
R1  R2  {S  S1 S2}, 
S) 

Closure Under Kleene Star
Let G = (V, , R, S1). 

Assume that G does not have the nonterminal S.

Let L = L(G)*.

We can show that L is CF by exhibiting a CFG for it:

G = (V1  {S}, 1, 
R1  {S  , S  S S1}, 
S) 
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Closure Under Reverse
LR= {w  * : w = xR for some x  L}. 

Let G = (V, , R, S) be in Chomsky normal form.

Every rule in G is of the form X  BC or X  a, where X, B, and C are 
elements of V -  and a  .

● X  a:  L(X) = {a}.  {a}R = {a}.  

● X  BC: L(X) = L(B)L(C).             (L(B)L(C))R = L(C)RL(B)R.  

Construct, from G, a new grammar G, such that L(G) = LR: 
G = (VG, G, R, SG), where R is constructed as follows:

● For every rule in G of the form X  BC, add to R the rule X  CB.

● For every rule in G of the form X  a, add to R the rule X  a.

Closure Under Intersection

The context-free languages are not closed under 
intersection:  

The proof is by counterexample.  Let:

L1 = {anbncm: n, m  0}     /* equal a’s and b’s.
L2 = {ambncn: n, m  0}     /* equal b’s and c’s.

Both L1 and L2 are context-free, since there exist 
straightforward context-free grammars for them.

But now consider:
L = L1  L2

= {anbncn: n  0}

Recall: Closed under union but not 
closed under intersection implies 
not closed under complement.
And we saw a specific example of a 
CFL whose complement was not 
CF.
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Closure Under Complement

L1  L2 = (L1  L2)

The context-free languages are closed under union, so if 
they were closed under complement, they would be 
closed under intersection (which they are not).

Alternative approach:
In a previous class, we demonstrated that the complement 

of L = AnBnCn is context-free, while L itself is not 
context-free, 

The Intersection of a Context-Free Language 
and a Regular Language is Context-Free

L = L(M1), a PDA = (K1, , 1, 1, s1, A1).
R = L(M2), a deterministic FSM = (K2, , , s2, A2).

We construct a new PDA, M3, that accepts L  R by simulating the 
parallel execution of M1 and M2.

M = (K1  K2, , 1, , [s1, s2], A1  A2).

Insert into :

For each rule  ((q1, a, ), (p1, )) in 1,
and each rule  ( q2, a, p2)            in , 
 contains      (([q1, q2]  a, ), ([p1, p2], )).

For each rule   ((q1, , ),  (p1, ) in 1,
and each state   q2 in K2, 
 contains      (([q1, q2], , ), ([p1, q2], )).

This works because: we can get away with only one stack.

I use square brackets 
for ordered pairs of 
states from K1  K2, to 
distinguish them from 
the tuples that are 
part of the notations 
for transitions in M1, 
M2, and M.
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Theorem: The difference (L1 – L2) between a context-free 
language L1 and a regular language L2 is context-free.

Proof: L1 – L2 = L1  L2.  

If L2 is regular then so is L2.  

If L1 is context-free, so is L1  L2.

The Difference between a Context-Free Language 
and a Regular Language is Context-Free

Halting

It is possible that a PDA may
● not halt, 
● never finish reading its input.   

Let  = {a} and consider M = 

L(M) = {a}:  (1, a, ) |- (2, a, a) |- (3, , ) 

On any other input except a: 
● M will never halt, or  
● M will never finish reading its input unless its input is .  
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Nondeterminism and Decisions

1. There are context-free languages for which no 
deterministic PDA exists. 

2. It is possible that a PDA may
● not halt, 
● not ever finish reading its input.
● require time that is exponential in the length of its 

input.

3. There is no PDA minimization  algorithm.
It is undecidable whether a PDA is minimal.

Solutions to the Problem

● For NDFSMs:
● Convert to deterministic, or
● Simulate all paths in parallel.

● For NDPDAs:
● No general solution.
● Formal solutions usually involve changing the

grammar.
● Such as Chomsky or Greibach Normal form.

● Practical solutions:
● Preserve the structure of the grammar, but
● Only work on a subset of the CFLs.

● LL(k),  LR(k)        (compilers course)
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Deterministic PDAs

A PDA M is deterministic iff:

● M contains no pairs of transitions that compete with 
each other, and

● Whenever M is in an accepting configuration it has 
no available moves.  

//

M can choose between 
accepting and taking the
-transition, so it is not 
deterministic.

Deterministic CFLs (very quick 
overview without many details)

A language L is deterministic context-free iff L$ 
can be accepted by some deterministic PDA.  

Why $?

Let L = a*  {anbn : n > 0}.
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An NDPDA for L

L = a*  {anbn : n > 0}.

A DPDA for L$

L = a*  {anbn : n > 0}.
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DCFL Properties (skip the details)

.

The Deterministic CF Languages are closed under complement.

The Deterministic CF Languages are not closed under 
intersection or union.

Nondeterministic CFLs

Theorem: There exist CLFs that are not deterministic.

Proof: By example. Let L = {aibjck, i  j or j  k}.  L is CF.  If L is DCF 
then so is:

L = L.
= {aibjck, i, j, k  0 and i = j = k} 

{w  {a, b, c}* : the letters are out of order}.

But then so is:

L = L  a*b*c*.
= {anbncn, n 0}.

But it isn’t.  So L is CF but not DCF.

This simple fact poses a real problem for the designers of efficient 
context-free parsers.

Solution:  design a language that is deterministic.  LL(k) or LR(k).
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The CFL Hierarchy

Context-Free Languages Over 
a Single-Letter Alphabet

Theorem: Any context-free language over a single-letter 
alphabet is regular.

Proof: Requires Parikh’s Theorem, which we are 
skipping
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Algorithms and Decision 
Procedures for 

Context-Free Languages

Chapter 14

Decision Procedures for CFLs

Membership: Given a language L and a string w, is w in L?

Two approaches:
● If L is context-free, then there exists some context-free 

grammar G that generates it.  Try derivations in G and see 
whether any of them generates w.

Problem (later slide):

● If L is context-free, then there exists some PDA M that 
accepts it.  Run M on w.

Problem (later slide):



4/26/2018

14

Decision Procedures for CFLs

Membership:  Given a language L and a string w, is w in L?

Two approaches:
● If L is context-free, then there exists some context-free 

grammar G that generates it.  Try derivations in G and see 
whether any of them generates w.

S  S T | a Try to derive  aaa

S

S T

S     T

Decision Procedures for CFLs

Membership:  Given a language L and a string w, is w in L?

● If L is context-free, then there exists some PDA M that 
accepts it.  Run M on w.

Problem:
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Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

1. If given a PDA, build G so that L(G) = L(M).

2. If w =  then if SG is nullable then accept, else reject.

3. If w   then:
3.1 Construct G in Chomsky normal form  such that 

L(G) = L(G) – {}.

3.2 If G' derives w, it does so in ______ steps.  Try all
derivations in G' of  ______ steps.  If one of them
derives w, accept.  Otherwise reject.

How many steps (as a function of |w|) in the 
derivation of w from CNF grammar G' ?

Using a Grammar

decideCFLusingGrammar(L: CFL, w: string) =

1. If given a PDA, build G so that L(G) = L(M).

2. If w =  then if SG is nullable then accept, else reject.

3. If w   then:
3.1 Construct G in Chomsky normal form  such that 

L(G) = L(G) – {}.

3.2 If G' derives w, it does so in 2|w| - 1 steps.  Try all
derivations in G' of  2|w| - 1 steps.  If one of them
derives w, accept.  Otherwise reject.

Alternative O(n3) algorithm:  CKY.
a.k.a.  CYK.
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Emptiness

Given a context-free language L, is L = ?

decideCFLempty(G: context-free grammar) =

1. Let G = removeunproductive(G).

2. If S is not present in G then return True
else return  False. 

Finiteness

Given a context-free language L, is L infinite?

decideCFLinfinite(G: context-free grammar) =

1. Lexicographically enumerate all strings in * of length 
greater than bn and less than or equal to bn+1 + bn.  

2. If, for any such string w, decideCFL(L, w) returns True
then return True.  L is infinite.

3. If, for all such strings w, decideCFL(L, w) returns False
then return False.  L is not infinite.

Why these bounds?



4/26/2018

17

Some Undecidable Questions about CFLs

● Is L = *?

● Is the complement of L context-free?

● Is L regular?

● Is L1 = L2?

● Is L1  L2?

● Is L1  L2 = ?

● Is L inherently ambiguous?

● Is G ambiguous?

Regular and CF Languages

Regular Languages Context-Free Languages

● regular exprs. ● context-free grammars
● or

● regular grammars
● = DFSMs ● = NDPDAs
● recognize ● parse
● minimize FSMs ● try to find unambiguous grammars

● try to reduce nondeterminism in PDAs
● find efficient parsers

● closed under: ● closed under:
♦ concatenation ♦ concatenation
♦ union ♦ union
♦ Kleene star ♦ Kleene star
♦ complement
♦ intersection ♦ intersection w/ reg. langs

● pumping theorem ● pumping theorem
● D = ND ● D  ND
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TURING MACHINE INTRO

Languages and Machines
SD

D

Context-Free
Languages

Regular
Languages
reg exps

FSMs

cfgs        
PDAs

unrestricted grammars
Turing Machines
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SD Language

Unrestricted 
Grammar

Turing  
Machine

L

Accepts

Grammars, SD Languages, and Turing Machines

Turing Machines (TMs)

We want a new kind of automaton:

● powerful enough to describe all computable things,

unlike FSMs and PDAs.

● simple enough that we can reason formally about it

like FSMs and PDAs,
unlike real computers.

Goal:  Be able to prove things about what can and   
cannot be computed.
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Turing Machines

At each step, the machine must:

● choose its next state, 
● write on the current square, and
● move left or right.

A Formal Definition

A (deterministic) Turing machine M is  (K, , , , s, H):

● K is a finite set of states;
●  is the input alphabet, which does not contain � ;
●  is the tape alphabet, 

which must contain � and have  as a subset.  
● s  K is the initial state;
● H  K is the set of halting states;
●  is the transition function:

(K - H)       to    K    {, }

non-halting   tape     state  tape     direction to move
state              char char (R or L)
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Notes on the Definition

1. The input tape is infinite in both directions.

2.  is a function, not a relation.  So this is a definition for 
deterministic Turing machines.

3.  must be defined for all (state, tape symbol) pairs unless the 
state is a halting state.

4. Turing machines do not necessarily halt (unlike FSM's and  
most PDAs).  Why?  To halt, they must enter a halting state.  
Otherwise they loop.

5. Turing machines generate output, so they can compute 
functions.

An Example
M takes as input a string in the language:

{aibj, 0  j  i}, 

and adds b’s as required to make the number of b’s equal the number 
of a’s.  

The input to M will look like this:

The output should be:



4/26/2018

22

The Details (ε)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 

s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

       

1

The Details (ε)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

       

2
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The Details (ε)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

       

6

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a   

1
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a   

2

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ a   

3
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ a   

3

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ a #  

4
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ #  

3

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ #  

3
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ #  

3

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

5
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a $ # # 

5

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a # # 

5
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a b # 

5

The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a b b 

5
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The Details(aa)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a b b 

6

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a b b 

1

The steps are the same as 
previous example until we read 
the b; skip to there
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The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for strings:
ε, aa, aabb, a, aab, b

   $ a b b 

3

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ a # b 

4
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The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # b 

3

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # b 

3
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The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

In state 4, go left until 
we hit a blank

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for strings:
ε, aa, aabb, a, aab, b

   $ $ # # 

4
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The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

4

The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

5
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The Details (aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   $ $ # # 

5

Go right, replacing $ with a and # 
with b, then move left, as in the last 
part of the previous example.

The Details(aabb)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a b b 

6
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The Details (aab)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   a a b  

1
You should try this one.

The Details (b)
K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, � , $, #}, 
s = 1, H = {6},  =

Show what happens for 
strings:
ε, aa, aabb, aab, b

   b    

1

In the first step, move right.  Then there is 
no transition in the diagram.  But there is an 
implied transition to a dead state, i.e. a new 
halting state that does not accept.
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Notes on Programming

The machine has a strong procedural feel, with one phase 
coming after another.

There are common idioms, like scan left until you find a 
blank

There are two common ways to scan back and forth 
marking things off.

Often there is a final phase to fix up the output.

Even a very simple machine is a nuisance to write.


