

Recap: Yields

Let c be any element of $\Sigma \cup\{\varepsilon\}$,
Let γ_{1}, γ_{2} and γ be any elements of Γ^{*}, and Let w be any element of Σ^{*}.

Then:
$\left(q_{1}, c w, \gamma_{1} \gamma\right) \vdash_{M}\left(q_{2}, w, \gamma_{2} \gamma\right)$ iff $\left(\left(q_{1}, c, \gamma_{1}\right),\left(q_{2}, \gamma_{2}\right)\right) \in \Delta$.
Let $\vdash_{M}{ }^{*}$ be the reflexive, transitive closure of \vdash_{M}.
C_{1} yields configuration C_{2} iff $C_{1} \vdash_{M}{ }^{*} C_{2}$

Recap: Nondeterminism

If M is in some configuration $\left(q_{1}, s, \gamma\right)$ it is possible that:

- Δ contains exactly one transition that matches.
- Δ contains more than one transition that matches.
- Δ contains no transition that matches.

Recap: Computations

A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration
- C_{n} is of the form (q, ε, γ), for some state $q \in K_{M}$ and some string γ in Γ^{*}
- $C_{0} r_{M} C_{1} r_{M} C_{2} r_{M} \ldots r_{M} C_{n}$.

Recap: Accepting Computation

A computation C of M is an accepting computation iff:

- $C=(s, w, \varepsilon) \vdash_{M}{ }^{*}(q, \varepsilon, \varepsilon)$, and
- $q \in A$.
M accepts a string w iff at least one of its computations accepts.
Other paths may:
- Read all the input and halt in a nonaccepting state
- Read all the input and halt in an accepting state with a non-empty stack
- Loop forever and never finish reading the input
- Reach a dead end where no more input can be read

The language accepted by M, denoted $L(M)$,
is the set of all strings accepted bv M.

Rejecting

A computation C of M is a rejecting computation iff:

$$
\text { - } C=(s, w, \varepsilon) \vdash_{M}^{*}(q, \varepsilon, \alpha),
$$

- C is not an accepting computation, and
- M has no moves that it can make from (q, ε, α).
M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts nor rejects.

PDA examples

Construct PDAs to recognize specific languages

A PDA for Bal

$$
\begin{array}{ll}
M=(K, \Sigma, \Gamma, \Delta, s, A), \text { where: } \\
K=\{s\} & \text { the states } \\
\Sigma=\{(,)\} & \text { the input alphabet } \\
\Gamma=\{(\} & \text { the stack alphabet } \\
A=\{s\} & \\
\Delta \text { contains: } & \\
& \left(\left(s,(, \varepsilon),(s,()){ }^{* *}\right.\right. \\
& ((s,),(),(s, \varepsilon))
\end{array}
$$

**Important: This does not mean that the stack is empty

A PDA for $\left\{w c w^{R}: w \in\{a, b\}^{*}\right\}$

$M=(K, \Sigma, \Gamma, \Delta, s, A)$, where:
$K=\{s, f\}$
$\Sigma=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\Gamma=\{a, b\}$
$A=\{f\}$
$A=\{f\} \quad$ the accepting states
Δ contains: ((s, a, ε), (s, a))
((s, b, $\varepsilon),(s, b))$
((s, c, $\varepsilon),(f, \varepsilon))$
((f, a, a), (f, $\varepsilon))$
$((f, \mathrm{~b}, \mathrm{~b}),(f, \varepsilon))$

A PDA for $\left\{a^{n} b^{2 n}: n \geq 0\right\}$

A PDA for $\left\{a^{n} b^{2 n}: \boldsymbol{n} \geq \mathbf{0}\right\}$

A PDA for PalEven $=\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$

$$
\begin{aligned}
& S \rightarrow \varepsilon \\
& S \rightarrow a S a \\
& S \rightarrow b S b
\end{aligned}
$$

This one is
nondeterministic

A PDA:

\square

A PDA for $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}$

More on Nondeterminism Accepting Mismatches

$$
L=\left\{\mathrm{a}^{m} \mathrm{~b}^{n}: m \neq n ; m, n>0\right\}
$$

Start with the case where $n=m$:

- If stack and input are empty, halt and reject.
- If input is empty but stack is not $(m>n)$ (accept):
- If stack is empty but input is not $(m<n)$ (accept):

More on Nondeterminism
 Accepting Mismatches

$L=\left\{a^{m} b^{n}: m \neq n ; m, n>0\right\}$

- If stack is empty but input is not $(m<n)$ (accept):

Reducing Nondeterminism

- Original non-deterministic model

- With the markers:

The Power of Nondeterminism

Consider $A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} C^{n}: n \geq 0\right\}$.

PDA for it?

The Power of Nondeterminism

Consider $A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$. PDA for it?

Now consider $L=\neg A^{n} \mathrm{~B}^{n} \mathrm{C}^{n}$. L is the union of two languages:

1. $\left\{w \in\{a, b, c\}^{*}\right.$: the letters are out of order $\}$, and
2. $\left\{\mathrm{a}^{i} \mathrm{~b}^{j} \mathrm{c}^{k}: i, j, k \geq 0\right.$ and $(i \neq j$ or $j \neq k)$ (in other words, unequal numbers of a's, b's, and c's).

$$
L=\left\{a^{n} b^{m} \mathbf{c}^{p}: n, m, p \geq 0 \text { and } n \neq m \text { or } m \neq p\right\}
$$

$S \rightarrow N C$	$l^{*} n \neq m$, then arbitrary c's
$S \rightarrow Q P$	l^{*} arbitrary a's, then $p \neq m$

$\quad l^{*}$ arbitrary a's, then $p \neq m$
$N \rightarrow A \quad \quad / *$ more a's than b's
$N \rightarrow B \quad$ /* more b's than a's
$A \rightarrow \mathrm{a}$
$A \rightarrow a A$
$A \rightarrow \mathrm{aAb}$
$B \rightarrow \mathrm{~b}$
$B \rightarrow B b$
$B \rightarrow \mathrm{aBb}$
$C \rightarrow \varepsilon \mid c C \quad \quad / *$ add any number of c's
$P \rightarrow B^{\prime} \quad /^{*}$ more b's than c's
$P \rightarrow C^{\prime} \quad /^{*}$ more c's than b's
$B^{\prime} \rightarrow \mathrm{b}$
$B^{\prime} \rightarrow \mathrm{bB} B^{\prime}$
$B^{\prime} \rightarrow \mathrm{bB}{ }^{\prime} \mathrm{c}$
$\mathrm{C}^{\prime} \rightarrow \mathrm{c} \mid \mathrm{C}^{\prime} \mathrm{C}$
$C^{\prime} \rightarrow C^{\prime} \mathrm{C}$
$C^{\prime} \rightarrow b C^{\prime} c$
$Q \rightarrow \varepsilon \mid a Q \quad$ /* prefix with any number of a's

Closure question

- Is the set of context-free languages closed under complement?

