
4/19/2018

1

PDA examples

More About Nondeterminism

MA/CSSE 474
Theory of Computation

Your Questions?
• Previous class days'

material

• Reading Assignments

• HW11 or 12 problems
• Anything else

4/19/2018

2

Recap: Definition of a Pushdown
Automaton

M = (K, , , , s, A), where:
K is a finite set of states
 is the input alphabet
 is the stack alphabet
s K is the initial state
A K is the set of accepting states, and
 is the transition relation. It is a finite subset of

(K ({}) *) (K *)

state input string of state string of
symbol symbols symbols
or to pop to push

from top on stack

 and are not
necessarily disjoint

What does an individual element of look like?

Recap: Definition of a Pushdown
Automaton

A configuration of M is an element of
K * *.

The initial configuration of M is
(s, w,), where w is the input string.

4/19/2018

3

Recap: Yields

Let c be any element of {},
Let 1, 2 and be any elements of *, and
Let w be any element of *.

Then:

(q1, cw, 1) ⊦M (q2, w, 2) iff ((q1, c, 1), (q2, 2)) .

Let ⊦ M* be the reflexive, transitive closure of ⊦M.

C1 yields configuration C2 iff C1 ⊦M* C2

Recap: Nondeterminism

If M is in some configuration (q1, s,) it is possible that:

● contains exactly one transition that matches.

● contains more than one transition that matches.

● contains no transition that matches.

4/19/2018

4

Recap: Computations

A computation by M is a finite sequence of
configurations C0, C1, …, Cn for some n 0 such that:

● C0 is an initial configuration

● Cn is of the form (q, ,), for some state q KM

and some string in *

● C0 ⊦M C1 ⊦M C2 ⊦M … ⊦M Cn.

Recap: Accepting Computation

A computation C of M is an accepting computation iff:
● C = (s, w,) ⊦M* (q, ,), and
● q A.

M accepts a string w iff at least one of its computations accepts.

Other paths may:
● Read all the input and halt in a nonaccepting state
● Read all the input and halt in an accepting state with a

non-empty stack
● Loop forever and never finish reading the input
● Reach a dead end where no more input can be read

The language accepted by M, denoted L(M),
is the set of all strings accepted by M.

4/19/2018

5

Rejecting

A computation C of M is a rejecting computation iff:

● C = (s, w,) ⊦M* (q, ,),
● C is not an accepting computation, and
● M has no moves that it can make from (q, ,).

M rejects a string w iff all of its computations reject.

Note that it is possible that, on input w, M neither accepts
nor rejects.

PDA examples

Construct PDAs to recognize specific
languages

4/19/2018

6

A PDA for Bal

M = (K, , , , s, A), where:
K = {s} the states
 = {(,)} the input alphabet
 = {(} the stack alphabet
A = {s}
 contains:

((s, (,), (s, ()) **
((s,), (), (s,))

**Important: This does not mean that the stack is empty

A PDA for AnBn = {anbn: n 0}

4/19/2018

7

M = (K, , , , s, A), where:
K = {s, f} the states
 = {a, b, c} the input alphabet
 = {a, b} the stack alphabet
A = {f} the accepting states
 contains: ((s, a,), (s, a))

((s, b,), (s, b))
((s, c,), (f,))
((f, a, a), (f,))
((f, b, b), (f,))

A PDA for {wcwR: w {a, b}*}

How can we modify
this PDA to accept
{wwR: w {a, b}*} ?

A PDA for {anb2n: n 0}

4/19/2018

8

A PDA for {anb2n: n 0}

A PDA for PalEven ={wwR: w {a, b}*}

S
S aSa
S bSb

A PDA:

This one is
nondeterministic

4/19/2018

9

A PDA for PalEven ={wwR: w {a, b}*}

S
S aSa
S bSb

A PDA:

This one is
nondeterministic

A PDA for {w {a, b}* : #a(w) = #b(w)}

4/19/2018

10

A PDA for {w {a, b}* : #a(w) = #b(w)}

More on Nondeterminism
Accepting Mismatches

L = {ambn : m n; m, n > 0}

Start with the case where n = m:

a//a

b/a/

b/a/

1 2

4/19/2018

11

More on Nondeterminism
Accepting Mismatches

L = {ambn : m n; m, n > 0}

Start with the case where n = m:

a//a

b/a/

b/a/

● If stack and input are empty, halt and reject.

● If input is empty but stack is not (m > n) (accept):

● If stack is empty but input is not (m < n) (accept):

1 2

More on Nondeterminism
Accepting Mismatches

L = {ambn : m n; m, n > 0}

a//a

b/a/

b/a/

● If input is empty but stack is not (m > n) (accept):

a//a

b/a/

b/a/

/a/

/a/

1 2

21 3

4/19/2018

12

More on Nondeterminism
Accepting Mismatches

L = {ambn : m n; m, n > 0}

a//a

b/a/

b/a/

● If stack is empty but input is not (m < n) (accept):

a//a

b/a/

b/a/

1 2

21 4

b//

b//

L = {ambn : m n; m, n > 0}

● State 4: Clear the input
● State 3: Clear the stack
● A non-deterministic machine!

What if we could
detect end of input (as we can in real-world

situations)?
detect empty stack?

● Add end-of-input marker $ to Σ
● Add bottom-of-stack marker # to Γ

4/19/2018

13

Reducing Nondeterminism
● Original non-deterministic model

● With the markers:

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n 0}.

PDA for it?

4/19/2018

14

The Power of Nondeterminism

Consider AnBnCn = {anbncn: n 0}. PDA for it?

Now consider L = AnBnCn. L is the union of two
languages:

1. {w {a, b, c}* : the letters are out of order}, and

2. {aibjck: i, j, k 0 and (i j or j k)} (in other words,
unequal numbers of a’s, b’s, and c’s).

A PDA for L = AnBnCn

4/19/2018

15

L = {anbmcp: n, m, p 0 and n m or m p}

S NC /* n m, then arbitrary c's
S QP /* arbitrary a's, then p m
N A /* more a's than b's
N B /* more b's than a's
A a
A aA
A aAb
B b
B Bb
B aBb
C | cC /* add any number of c's
P B' /* more b's than c's
P C' /* more c's than b's
B' b
B' bB'
B' bB'c
C' c | C'c
C' C'c
C' bC'c
Q | aQ /* prefix with any number of a's

Closure question

• Is the set of context-free languages closed
under complement?

