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MA/CSSE 474

Theory of Computation

Functions on Languages, Decision 
Problems

(if time) Logic: Some harder parts

Your Questions?
• Syllabus

• Yesterday's discussion

• Reading Assignments

• HW2

• Anything else

A 
representation 
of a number is 
not the same 
thing as the 
number itself
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Some "Canonical" Languages from our 
textbook

• AnBn = {anbn : n >= 0}

• Bal = { strings of balanced parentheses}

• WW = {ww : w  *} 

• PalEven {wwR : w  *} 

• AnBnCn = {anbncn : n >= 0}

• HPALL = {<T> : T is a Turing machine that 
eventually halts, no matter what input it is given}

• PRIMES = {w : w is the binary encoding of a 
prime integer}

Equivalence Relations
A relation on a set A is any set of ordered pairs of 
elements of A.

A relation R  A  A is an equivalence relation iff it is:

•reflexive, 

•symmetric, and 

•transitive.  

Examples of equivalence relations:

•Equality

•Lives-at-Same-Address-As

•Same-Length-As

•Contains the same number of a's as

Show that ≡₃
is an 
equivalence 
relation
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Functions whose domains and ranges are languages

maxstring(L) = {w  L: z  * (z    wz  L)}.  

Examples:

• maxstring( AnBn )

• maxstring( {a}* )

Let INF be the set of all infinite languages.
Let FIN be the set of all finite languages.

Are the language classes FIN and INF closed under 
maxstring?

Functions on Languages

Exercise for later:
What language is            

maxstring({bna: n≥0})  ? 

chop(L) = 
{w : xL (x = x1cx2,  x1  L*,  x2  L*, c  L, 

|x1| = |x2|,  and w = x1x2)}.

What is chop(AnBn)?  

What is chop(AnBnCn)?  

Are FIN and INF closed under chop?

Functions on Languages
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firstchars(L) = 
{w : yL (y = cx  c  L  x  L*  w  {c}*)}.  
.

What is firstchars(AnBn)?  

What is firstchars({a, b}*)?  

Are FIN and INF closed under firstchars?

Functions on Languages

Decision Problems
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A decision problem is simply a problem for which the 
answer is yes or no (True or False). 
A decision procedure answers a decision problem.

Examples:

•  Given an integer n, is n the product of two consecutive 
integers?

•  The language recognition problem:  Given a 
language L and a string w, is w in L?

• We'll explore what we mean by "given a language"

Decision Problems

The Power of Encoding

Anything can be encoded as a string.  
For example, on a computer  everything is encoded as 
strings of bits.  
Assume that we have a scheme for encoding objects 
(integers, for example).

<X> is our notation for the string encoding of X.
<X, Y> is the string encoding of the pair X, Y.

Problems that don’t look like decision problems about 
strings and languages can be recast into new problems that 
do look like that.
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Example: Web Pattern Matching

Pattern matching on the web:

• Problem: Given a search string w and a web 
document d, do they “match”?  In other words, 
should a search engine, on input w, consider 
returning d?

• An instance of the problem has the form  (w, d)

• The language to be decided: 
{<w, d> : d is a candidate match for the string w}

The Halting Problem

Does a program always halt?

• Problem: Given a program p, written in some 
some standard programming language L, is p
guaranteed to halt, no matter what input it is  
given?

• An instance of the problem: Does Python    
program "print(input())" always halt?

• The language to be decided: 
HPALL = {pL : p halts on all inputs}
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Primality Testing

• Problem: Given a nonnegative integer n, is it prime?

• An instance of the problem: Is 9 prime?

• To encode the problem we need a way to encode each 
instance: encode each nonnegative integer as a binary string.

• The language to be decided (2 ways to express it): 

PRIMES = {w : w is the binary encoding of a prime integer}.  
Equivalently:

PRIMES = {<n> : n is a prime integer}.

• Problem:  Given an undirected graph G, is it connected?  

• Instance of the problem: 

1           2            3

4           5

• Encoding of the problem: Let V be a set of binary representations of numbers,
one for  each vertex in G.  

Then we construct G as follows:
• Write |V| as a binary number, then write "/".
• Write a list of edges,  each pair of binary numbers represents one edge.
• Separate all such binary numbers by “/”.

Full encoding of the above graph: 101/1/10/1/100/10/101/10/11   ( the 101 is |V| )
• The language to be decided: 

CONNECTED = {w  {0, 1, /}* : w = n1/n2/…ni, where each ni is a binary string 
and w encodes a connected graph, as described above}.

Graph Connectivity
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• Problem: Given a protein fragment f and a complete      
protein molecule p, could f be a fragment from p?

• Encoding of the problem: Represent each protein 
molecule or fragment as a sequence of amino acid    
residues.  Assign a letter to each of the 20 possible 
amino acids.  So a protein fragment might be 
represented as AGHTYWDNR.

• The language to be decided: 
{<f, p> : f could be a  fragment from p}.

Protein Sequence Allignment

By equivalent we mean that either problem can be reduced 
to the other.

If we have a machine to solve either problem, 
– we can use it to build a machine to solve the other,
– using only the starting machine 
– and other functions that can be built using machines 

of equal or lesser power.

We will see that reduction does not always preserve 
efficiency!

Computation problems and their 
Language Formulations may be 

Equivalent
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Cast multiplication as a language recognition problem:

• Problem: Given two nonnegative integers, 
compute their product.

• Encode the problem: Transform computing into verification.

• The language to be decided:

INTEGERPROD = {w of the form:
<int1>x<int2>=<int3>, 
where each <intn> is an encoding (decimal in this case) of an integer, 
and int3 = int1  int2}

12x9=108  INTEGERPROD
12=12  INTEGERPROD
12x8=108  INTEGERPROD

Turning a Problem into a Language 
Recognition Problem

INTEGERPROD =  {w of the form:  <int1>x<int2>=<int3>, 
where each <intn> is an encoding (decimal) of an 
integer, and int3 = int1  int2}

Reduce INTEGERPROD to Mult: Given a multiplication function Mult for 
integers, we can build a procedure that recognizes the 
INTEGERPROD language: We'll do this together

Reduce Mult to INTEGERPROD : Given a function R(w) that 
recognizes  INTEGERPROD, we can build a procedure Mult(m,n)  
that computes the product of two integers:  You should figure this 
out before Monday's class

Show the Equivalence 
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Regular Languages (formally)

More on Finite State Machines

Regular Languages

Regular 
Language

Regular Expression

Finite State  
Machine

Represents

Accepts
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A real-world FSM Example

A

D

C

B

Recap - Definition of a DFSM

M = (K, , , s, A), where:

K is a finite set of states

 is a (finite) alphabet

s  K is the initial state (a.k.a. start state)

A  K is the set of accepting states

: (K  )  K is the transition function

Sometimes we will put an M subscript on K, , , s, or 
A (for example, sM), to indicate that this component is 
part of machine M.

The D is for 
Deterministic
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Acceptance by a DFSM
Informally, M accepts a string w iff M winds up in some element of A after 
it has finished reading w.

The language accepted by M, denoted L(M), is the set of all strings 
accepted by M.

But we need more formal notations if we want to prove things about 
machines and languages.

On day 1, we saw one notation, the extended delta function.

Today we examine the book's notation, ⊢.  Unicode 22A2. That symbol is 
commonly called turnstile or tee.  It is often read as "derives" or "yields"

Configurations of a DFSM

A configuration of a DFSM M is an element of:

K  *  

It captures the two things that affect M’s future 
behavior:

• its current state
• the remaining input to be read.

The initial configuration of a DFSM M, on input w, is:

(sM, w)

Where sM is the start state of M.
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The "Yields" Relations

The yields-in-one-step relation: ⊢M  :

(q, w) ⊦M (q', w') iff

• w = a w' for some symbol a  , and
•  (q, a) = q'

The yields-in-zero-or-more-steps relation: ⊦M* 

⊦M* is the reflexive, transitive closure of ⊦M .

Note that this accomplishes the same thing as the 
"extended delta function" that we considered on 
Day 1.  Two notations for the same concept.

Computations Using FSMs

A computation by M is a finite sequence of 
configurations C0, C1, …, Cn for some n  0 
such that:

• C0 is an initial configuration,

• Cn is of the form (q, ), 
for some state q  KM,

• i{0, 1, …, n-1} (Ci ⊦M Ci+1)
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An Example Computation
A FSM M that accepts decimal representations of odd 

integers:

even                            odd     

even

q0 q1

odd

On input 235, the configurations are:

(q0, 235) ⊦M (q0, 35)
⊦M (q1, 5)
⊦M (q1, )

Thus (q0, 235) ⊦M * (q1, )

Accepting and Rejecting
A DFSM M accepts a string w iff:

(sM, w) ⊦M* (q, ), for some q  AM 

A DFSM M rejects a string w iff:

(sM, w) ⊦M* (q, ), for some q  AM

The language accepted by M, denoted L(M), is the set of 
all strings accepted by M.

Theorem: Every DFSM M, in configuration (q, w), 
halts after |w| steps.

Thus every string  is either accepted or rejected by a DFSM.
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Proof of Theorem

Theorem: Every DFSM M, in configuration (q, w), 
halts after |w| steps.

Proof: by induction on |w|

Base case:  If w is , it halts in 0 steps.

Induction step: Assume true for strings of length n and 
show for strings of length n+1.

Let w  *, w  .  Then  |w| = n+1 for some n  .

So w must be au for some a , u*, |u| = n.

Let q' be (q, a).  By definition of ⊦,  (q,w) ⊦ M (q', x)

By the induction hypothesis, starting from configuration 
(q', u), M halts after n steps. 

Thus, starting from the original configuration, M halts 
after n+1 steps.

Cast sorting as language recognition decision problem:

• Problem: Given a list of integers, sort it.

• Encoding of the problem: Transform the sorting 
problem into one of examining a pair of lists. 

• The language to be decided:

L = {w1 # w2: n1
(w1 is of the form <int1, int2, … intn>, 
w2 is of the form <int1, int2, … intn>, and
w2 contains the same objects as w1 and 
w2 is sorted)}

Examples:
<1,5,3,9,6>#<1,3,5,6,9>  L
<1,5,3,9,6>#<1,2,3,4,5,6,7>  L

Turning Problems Into Language 
Recognition Problems
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Cast database querying as decision:

• Problem: Given a database and a query, execute the query.

• Encoding of the problem: Transform the query execution problem 
into evaluating a reply for correctness.

• The language to be decided:

L = {d # q # a:
d is an encoding of a database,
q is a string representing a query, and
a is the correct result of applying q to d}

Example:
(name, age, phone), (John, 23, 567-1234)
(Mary, 24, 234-9876)#(select name age=23)#
(John)    L

Turning Problems Into Decision Problems

By equivalent we mean that either problem can be reduced to the other.

If we have a machine to solve one, we can use it to build a machine to 
do the other, using only the starting machine and other functions that 
can be built using machines of equal or lesser power.

Reduction does not always preserve efficiency!

The Traditional Problems and their 
Language Formulations are Equivalent
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Cast multiplication as language recognition:

• Problem: Given two nonnegative integers, 
compute their product.

• Encode the problem: Transform computing into verification.

• The language to be decided:

INTEGERPROD =  {w of the form:
<int1>x<int2>=<int3>, where each <intn> is an 
encoding (decimal in this case) of an integer, and

int3 = int1  int2}

12x9=108  INTEGERPROD
12=12  INTEGERPROD
12x8=108  INTEGERPROD

Turning Problems into Language 
Recognition Problems

Consider the multiplication language example:
INTEGERPROD =  {w of the form:

<int1>x<int2>=<int3>, where each <intn> is an 
encoding (decimal in this case) of an integer, and

int3 = int1  int2}

Given a multiplication function for integers, we can build a 
procedure that recognizes the INTEGERPROD language:  
(We will do this today)

Given a function R(w) that recognizes  INTEGERPROD, 
we can build a procedure Mult(m,n)  that computes the 
product of two integers:  (figure this out during the 
weekend)

Show the Equivalence 
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Logic: Propositional and first-order

Review of material form Grimaldi Chapter 2
Based on Rich Chapter 8

Logic: Propositional and first-order
From Rich, Appendix A

Most of this material also appears in Grimaldi's Discrete Math book, Chapter 2

I used these slides and exercises in the past.  Since 
2012,  I have not been going through them in class 
because most are background material from the 
perquisite course.  I am keeping all of the slides, for 
context and in case you find them helpful. If you 
want to look at these, but only at the most important 
slides, focus on the ones whose titles are in color, 
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Boolean (Propositional) Logic Wffs

1. A propositional symbol (variable or constant) is a wff. 
2. If P is a wff, then P is a wff.
3. If P and Q are wffs, then so are:

P  Q, P  Q, P  Q, P  Q, and (P).

A wff (well-formed formula) is any string that is formed 
according to the following rules:

P Q P P  Q P  Q P  Q P  Q

True True False True True True True

True False False True False False False

False True True True False True False

False False True False False True True

Note that 
P  Q is an 
abbreviation 
for P  Q.    
What does 
P  Q 
abbreviate?

When are Wffs True?

• A wff is valid or is a tautology iff it is true for all 
assignments of truth values to the variables it contains. 

• A wff is satisfiable iff it is true for at least one 
assignment of truth values to the variables it contains.  

• A wff is unsatisfiable iff it is false for all assignments 
of truth values to the variables it contains. 

• Two wffs P and Q are equivalent, written P  Q, iff
they have the same truth values for every assignment 
of truth values to the variables they contain.     

P  P is a tautology: P P P  P

True False True

False True True
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Entailment

A set S of wffs logically implies or entails a conclusion Q
iff, whenever all of the wffs in S are true, Q is also true.  

Example:

{A  B  C, D} (trivially) entails A  D

Inference Rules

• An inference rule is sound iff, whenever it is 
applied to a set A of axioms, any conclusion 
that it produces is entailed by A.  

• An entire proof is sound iff it consists of a 
sequence of inference steps each of which 
was constructed using a sound inference rule.  

• A set of inference rules R is complete iff, 
given any set A of axioms, all statements that 
are entailed by A can be proved by applying 
the rules in R.  
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Some Sound Inference Rules
You do not have to memorize the rules or their names, but given the list 

of rules, you should be able to use them in simple ways

• Modus ponens: From (P  Q) and P, 
conclude Q.

• Modus tollens: From (P  Q) and Q, 
conclude P.

• Or introduction: From P, conclude (P  Q). 
• And introduction: From P and Q, conclude

(P  Q).
• And elimination: From  (P  Q), conclude P

or conclude Q.
• Syllogism: From  (P  Q) and (Q  R) , 

conclude (P  R) .

Additional Sound Inference Rules

• Quantifier exchange:
• From x (P), conclude x (P).
• From x (P), conclude x (P).
• From x (P), conclude x (P).
• From x (P), conclude x (P) .

• Universal instantiation: For any constant C, from 
x (P(x)), conclude P(C).

• Existential generalization: For any constant C, 
from P(C) conclude x (P(x)).
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First-Order Logic

• If P is an n-ary predicate and each of the expressions 
x1, x2, … , xn is a term, then an expression of the form 
P(x1, x2, … , xn) is a wff.  If any variable occurs in such 
a wff, then that variable occurs free in P(x1, x2, … , xn) .  

• If P is a wff, then P is a wff.

• If P and Q are wffs, then so are P  Q, P  Q, P  Q, 
and P  Q.

• If P is a wff, then (P) is a wff.

• If P is a wff, then x (P) and x (P) are wffs.  Any free 
instance of x in P is bound by the quantifier and is then 
no longer free. 

A term is a variable, constant, or function application.
A well-formed formula (wff) in first-order logic is an 
expression that can be formed by:

Note that the definition is 
recursive, so proofs about 
wffs are likely to be by 
induction.

Example of a ternary 
predicate:
Pythagorean(a, b, c) is true 
iff a2 + b2 = c2.
Pythagorean(5, 12, 13) has 
no free variables, 
Pythagorean(x, y, 13)  has 
free variables

For last bullet, consider:  x
(y (x  y 
Pythagorean(x, y, 13)) ) .  x 
and y are bound by the 
quantifier here.
We can abbreviate this x,y
 (Pythagorean(x, y, 13)) 

Sentences

1. Bear(Smokey).

2. x (Bear(x)  Animal(x)).

3. x (Animal(x)  Bear(x)).

4. x (Animal(x)  y (Mother-of(y, x))).

5. x ((Animal(x)  Dead(x))  Alive(x)).

A wff with no free variables is called a sentence or a 
statement. 

A ground instance is a sentence that contains no 
variables, such as #1.

"Smokey" is a constant, as is the Bear predicate.

Which of these sentences are true in the everyday world?

The first is a 
sentence, if we 
assume that 
Smokey is a 
constant

True
True
False
True (if we assume 
that “exists” is not 
temporal)
True
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Interpretations and Models
• An interpretation for a sentence w is a pair (D, I), where  D

is a universe of objects.  
I assigns meaning to the symbols of w: 

it assigns values, drawn from D, to the constants in w
it assigns functions and predicates (whose domains 

and ranges are subsets of D) to the function and 
predicate symbols of w.

• A model of a sentence w is an interpretation that makes w
true.  For example, let w be the sentence:

x (y (y < x)).    Find a model for this sentence.

• A sentence w is valid iff it is true in all interpretations.

• A sentence w is satisfiable iff there exists some
interpretation in which w is true. 

• A sentence w is unsatisfiable iff w is valid. 

An interpretation of the 
sentence on this page is 
the integers, with < 
assigned to the normal < 
predicate.
Note that we use infix x < 
y instead of the formal 
<(x, y).

What about the sentence 
x (y (x*y = 0))?   A 
model for this sentence is 
the integers with the 
normal meanings of =, 0, 
and *.
Note that this involves 
assigning a value to the 
constant 0 in the 
expression.

Examples (Valid, satisfiable, unsatisfiable?)

• x ((P(x)  Q(Smokey))  P(x)).

• (x (P(x)  (P(x))). 

• x (P(x, x)).

First one is valid, independent of 
the values of P, Q, and Smokey

Second is invalid

Third depends on( Domain, 
Interpretation)   Example: satisfied 
by (integers, <=), but not (integers, 
<)
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A Simple Proof

Assume the following three axioms:

[1] x (P(x)  Q(x)  R(x)).
[2] P(X1).
[3] Q(X1). 

We prove R(X1) as follows:

[4] P(X1)  Q(X1)  R(X1). (Universal instantiation, [1].)
[5] P(X1)  Q(X1). (And introduction, [2], [3].)
[6] R(X1). (Modus ponens, [5], [4].)

Definition of a  Theory
• A first-order theory is a set of axioms and the set of all 

theorems that can be proved, using a set of sound and 
complete inference rules, from those axioms. 

• A theory is logically complete iff, for every sentence P 
in the language of the theory, either P or P is a 
theorem. 

• A theory is consistent iff there is no sentence P such 
that both P and  P are theorems. 

– If there is such a sentence, then the theory contains a 
contradiction and is inconsistent.

• Let w be an interpretation of a theory.  The theory is 
sound with respect to w if every theorem in the theory 
corresponds to a statement that is true in w.
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Subset-of as a Partial Order

Subset-of is a 
partial order 
(reflexive, 
antisymmetric, 
transitive)

Total Order

A total order R  A  A is a partial 
order that has the additional property 
that:

x, y  A ((x, y)  R  (y, x)  R). 

Example:   on the rational numbers

If R is a total order defined on a set A, 
then the pair (A, R) is a totally 
ordered set.  

6

5

4

3
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Infinite Descending Chain

• A partially ordered set (S, <) has an infinite descending 
chain if there is an infinite set of elements x0, x1, x2, … S
such that 
i (xi+1< xi)

• Example: 
In the rational numbers with <,

1/2 > 1/3 > 1/4 > 1/5 > 1/6 > …
is an infinite descending chain

Well-Founded and Well-Ordered Sets
Given a partially ordered set (A, R), an infinite 
descending chain is subset B of A that is a totally ordered 
with respect to R, that has no minimal element.  

If (A, R) contains no infinite descending chains then it is 
called a well-founded set.   

•Used for halting proofs.

If (A, R) is a well-founded set and R is a total order, then 
(A, R) is called a well-ordered set.  

•Used in induction proofs
•The positive integers are well-ordered
•The positive rational numbers are not well-ordered   
(with respect to normal <)

Exercise:  With one or two other students, come up with a relation R on 
S={rϵrationals: 0 < r < 1} suc that (S,R) is well-ordered.  R does not need to 
be consistent with the usual < ordering.  Hint:  Think diagonal.
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Mathematical Induction

1. A clear statement of the assertion P.

2. A proof that that P holds for some base case b, the 
smallest value with which we are concerned. 

3. A proof that, for all integers n ≥ b, if P(n) then it is 
also true that P(n+1).  We’ll call the claim P(n) the 
induction hypothesis. 

Because the integers ≥ b are well-ordered:

The principle of mathematical induction:
If: P(b) is true for some integer base case b, and

For all integers n ≥ b, P(n)  P(n+1)
Then: For all integers n ≥ b, P(n)

An induction proof has three parts:

Sum of First n Positive Odd Integers

The sum of the first n odd positive integers is n2.  We 
first check for plausibility: 

(n = 1) 1                   =  1  = 12.
(n = 2) 1 + 3             =  4  = 22.
(n = 3) 1 + 3 + 5       =  9  = 32.
(n = 4) 1 + 3 + 5 + 7 = 16 = 42, and so forth.

The claim appears to be true, so we should prove it.  
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Sum of First n Positive Odd  Integers
Let Oddi = 2(i – 1) + 1 denote the ith odd positive integer.  Then we 
can rewrite the claim as:

)(
1

2



n

i
i nOddn  1 

The proof of the claim is by induction on n:
Base case: take 1 as the base case.  1 = 12.

)))1(()((1
1

1

2

1

2 





n

i
i

n

i
i nOddnOddnProve:






1

1

n

i
iOdd 




n

i
ni OddOdd

1
1=

= n2+ Oddn+1.        (Induction hypothesis.)
= n2 + 2n + 1.            (Oddn+1 = 2(n+1–1) + 1 = 2n + 1.)
= (n + 1)2. 

Note that we start with one side of the equation we are trying to prove, 
and transform to get the other side.  We do not treat it like solving an 
equation, where we transform both sides in the same way.

For reference; 
we will not do 
this in class

Strong induction

• To prove that predicate P(n) is true for all n≥b:
– Show that P(b) is true [and perhaps P(b+1) *] 

– Show that for all j>b, if P(k) is true for all k with b≤ 
k<j, then P(j) is true. In symbols:

j >b ((k (b≤k<j  P(k))  P(j))

* We may have to show it directly for more than 
one or two values, but there should always be 
a finite number of base cases.
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Fibonacci Running Time
• From Weiss, Data Structures and Problem Solving 

with Java, Section 7.3.4
• Consider this function to recursively calculate 

Fibonacci numbers:  
F0=0        F1=1          Fn = Fn-1+Fn-2 if n≥2.
– def fib(n):

if n <= 1:
return n

return fib(n-1) + fib(n-2)
• Let CN be the total number of calls to fib during the 

computation of fib(N).
• It’s easy to see that C0=C1=1 , 

and if N ≥ 2, CN = CN-1 + CN-2 + 1.
• Prove that for N ≥ 3, CN = FN+2 + FN-1 -1.

Base cases, N=3, N=4
Assume by induction that if 
N>=3, then CN and CN+1 are 
the right things.  
Show that CN+2 is the right 
thing.
CN+2 = 1 + CN + CN+1

= (FN+2 + FN-1 – 1) + 
(FN+3 + FN – 1)  + 1 

= FN+4 + FN+1 – 1 
= FN+2+2 + FN+2-1 – 1 


