How I would write the Day 1 induction proof if I were turning in a 474 assignment:

$T=\left\{w \in\{0,1\}^{*}: w\right.$ does not have 11 as a substring $\}$

Show that $\mathbf{S}=\mathbf{T}$.

--------- Solution ---------
First, show that $S \subseteq T$. I.e, if w accepted by M, then w does not contain 11 . We do it by induction on $|w|$. But we show something more specific, namely:
P: For every string $w \in\{0,1\}^{*}$, both of the following are true (and these cover both possibilities for strings in $\mathrm{L}(\mathrm{M})$):

1. If $\delta(q 0, w)=q 0$, then w has no consecutive 1 's and does not end in 1 .
2. If $\delta(q 0, w)=q 1$, then w has no consecutive 1 's and ends in 1 .

Base case: $|w|=0$, so $w=\varepsilon$. We show both parts:

1. $\delta(q 0, w)=q 0$ and w has no consecutive 1 's and does not end in 1 . \checkmark
2. $\delta(q 0, w) \neq q 1$, so the statement is vacuously true $(F \rightarrow P$ is true no matter what P is) \checkmark

Induction step $|w|>0$, so $w=x a$ for some $a \in\{0,1\}, x \in\{0,1\}^{*}$.
The induction hypothesis (IH) is that (1) and (2) are true for the shorter string x . We must show that this implies that they are true for w.

1. Suppose that $\delta(\mathrm{q} 0, \mathrm{w})=\mathrm{q} 0$. Looking at the ways to get to q 0 in the DFSM, we see that $\mathrm{a}=0$, so w ends in 0 and that $\delta(q 0, x)=q 0$ or $q 1$. In either case, IH says that x does not contain 11 , and thus $\mathrm{w}=\mathrm{x} 0$ does not contain $11 . \checkmark$
2. Suppose that $\delta(\mathrm{q} 0, \mathrm{w})=\mathrm{q} 1$. Looking at the way to get to q 1 in the DFSM , we see that $\mathrm{a}=1$, so w ends in 1 and that $\delta(\mathrm{q} 0, \mathrm{x})=\mathrm{q} 0$. IH says that x does not end in 1 and does not contain 11 as a substring. Thus $\mathrm{w}=\mathrm{x} 1$ ends in 1 and does not contain $11 . \checkmark$

Now, show that $T \subseteq S$. I.e, if w does not contain 11, it accepted by M. It is easier to show the (equyivalent) contrapositive - If w is not accepted by M, it contains 11 as a substring.
Base case: $|w|=0$, so $w=\varepsilon$. Since this string is accepted by M, the statement is vacuously true.
Induction step $|w|>0$, so $w=$ xa for some $a \in\{0,1\}, x \in\{0,1\}^{*}$. The induction hypothesis (IH) is that if x is not accepted by M, x contains 11 . We must show that this implies that the same statement for w.

If M does not accept w, then $\delta(q 0, w)=q 3$. Looking at the DFSM diagram, we can see that there are two possible ways this can happen.

- $\quad \delta(q 0, x)=q 1$ and $a=1$. By what we proved before, x ends with 1 , so w ends with $11 . \checkmark$
- $\delta(q 0, x)=q 2$. BY the IH, x contains 11 as a substring. Since $w=x a, w$ also contains $11 . \checkmark$

