How I would write the Day 1 induction proof if I were turning in a 474 assignment:

, S = the language accepted by M (i.e., L(M))

 $\mathsf{T} = \{\mathsf{w} \in \{0,1\}^* : \mathsf{w} \text{ does not have } 11 \text{ as a substring} \}$

Show that S = T.

----- Solution ------

First, show that S \subseteq **T**. I.e, if w accepted by M, then w does not contain 11. We do it by induction on |w|. But we show something more specific, namely:

P: For every string $w \in \{0,1\}^*$, both of the following are true (and these cover both possibilities for strings in L(M)):

- 1. If $\delta(q0, w) = q0$, then w has no consecutive 1's and does not end in 1.
- 2. If $\delta(q0, w) = q1$, then w has no consecutive 1's and ends in 1.

Base case: |w| = 0, so $w = \varepsilon$. We show both parts:

- 1. $\delta(q0, w) = q0$ and w has no consecutive 1's and does not end in 1. \checkmark
- 2. $\delta(q0, w) \neq q1$, so the statement is vacuously true (F \rightarrow P is true no matter what P is) \checkmark

Induction step |w| > 0, so w = xa for some $a \in \{0,1\}$, $x \in \{0,1\}^*$. The induction hypothesis (IH) is that (1) and (2) are true for the shorter string x. We must show that this implies that they are true for w.

- 1. Suppose that $\delta(q0, w) = q0$. Looking at the ways to get to q0 in the DFSM, we see that a=0, so w ends in 0 and that $\delta(q0, x) = q0$ or q1. In either case, IH says that x does not contain 11, and thus w =x0 does not contain 11. \checkmark
- 2. Suppose that $\delta(q0, w) = q1$. Looking at the way to get to q1 in the DFSM, we see that a=1, so w ends in 1 and that $\delta(q0, x) = q0$. IH says that x does not end in 1 and does not contain 11 as a substring. Thus w=x1 ends in 1 and does not contain 11. \checkmark

Now, show that $T \subseteq S$. I.e, if w does not contain 11, it accepted by M. It is easier to show the (equyivalent) contrapositive – If w is not accepted by M, it contains 11 as a substring. Base case: |w| = 0, so $w = \varepsilon$. Since this string is accepted by M, the statement is vacuously true. Induction step |w| > 0, so w = xa for some $a \in \{0,1\}$, $x \in \{0,1\}^*$. The induction hypothesis (IH) is that if x is not accepted by M, x contains 11. We must show that this implies that the same statement for w.

If M does not accept w, then $\delta(q0, w) = q3$. Looking at the DFSM diagram, we can see that there are two possible ways this can happen.

- $\delta(q0, x) = q1$ and a=1. By what we proved before, x ends with 1, so w ends with 11. \checkmark
- $\delta(q0, x) = q2$. BY the IH, x contains 11 as a substring. Since w=xa, w also contains 11. $\sqrt{}$