
a) AANY = {<M> : TM M accepts at least one string}.

We show that AANY is not in D by reduction from H. Let R be a mapping reduction from H to AANY defined as

follows:

R(<M, w>) =

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as

follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

1.4. Accept.

2. Return <M#>.

If Oracle exists and decides AANY, then C = Oracle(R(<M, w>)) decides H. R can be implemented as a Turing

machine. And C is correct. M# ignores its own input. It halts on everything or nothing. So:

 <M, w> H: M halts on w, so M# accepts everything. So it accepts at least one string. Oracle(<M#>)

accepts.

 <M, w> H: M does not halt on w, so M# halts on nothing. So it does not accept even one string.

Oracle(<M#>) rejects.

But no machine to decide H can exist, so neither does Oracle.

b) AALL = {<M> : = L(M) = M* }.

We show that AALL is not in D by reduction from H. Let R be a mapping reduction from H to AANY defined as

follows:

R(<M, w>) =

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as

follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

1.4. Accept.

2. Return <M#>.

If Oracle exists and decides AALL, then C = Oracle(R(<M, w>)) decides H. R can be implemented as a Turing

machine. And C is correct. M# ignores its own input. It accepts everything or nothing. So:

 <M, w> H: M halts on w, so M# accepts everything. Oracle accepts.

 <M, w> H: M does not halt on w, so M# accepts on nothing. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

c) {<M, w> : Turing machine M rejects w}.

We show that L is not in D by reduction from H. Let R be a mapping reduction from H to AANY defined as

follows:

R(<M, w>) =

1. Construct the description <M#> of a new Turing machine M#(x) that, on input x, operates as

follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

1.4. Reject.

2. Return <M#, w>.

If Oracle exists and decides L, then C = Oracle(R(<M, w>)) decides H. R can be implemented as a Turing

machine. And C is correct. M# ignores its own input. It halts on everything or nothing. So:

 <M, w> H: M halts on w, so M# rejects everything. So, in particular, it rejects w. Oracle accepts.

 <M, w> H: M does not halt on w, so M# rejects nothing. So it does not reject w. Oracle(<M#>) rejects.

But no machine to decide H can exist, so neither does Oracle.

