MA/CSSE 474 Day 38 Summary

1) Review from recent sessions:
a) Language L_{1} (over alphabet Σ_{1}) is mapping reducible to language L_{2} (over alphabet Σ_{2}) and we write $L_{1} \leq L_{2}$ if there is a Turing-computable function $\mathrm{f}: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that $\forall \mathrm{x} \in \Sigma_{1}{ }^{*}, \mathrm{x} \in \mathrm{L}_{1}$ if and only if $\mathrm{f}(\mathrm{x}) \in \mathrm{L}_{2}$
b) Using reduction: If P_{1} is reducible to P_{2},
i) If P_{2} is decidable, so is P_{1}.
ii) If P_{1} is not decidable, neither is P_{2}.
c) A framework for using reduction to show undecidability.
To show language L_{2} undecidable:
i) Choose a language L_{1} that is already known not to be in D, and show that L_{1} can be reduced to L_{2}.
(1) Define the reduction R and show that it can be implemented by a TM.
ii) Describe the composition C of R with Oracle (the purported TM that decides L_{1}).
(1) Show that C correctly decides L_{1} iff Oracle exists. We do this by showing that C is correct. I.e., If $x \in L_{1}$, then $C(x)$ accepts, and If $x \notin L_{1}$, then $C(x)$ rejects.
2) $H_{A N Y}=\{<M>$: there exists at least one string on which $T M M$ halts $\}$ is not in D
i) Two different reductions from H : Details on slides. A place for your notes:
3) Undecidable problems and languages (there is a table of problems and languages in the previous day's class notes.
4) $H_{A L L}=\{<M>$: TM M halts on all inputs $\}$ is not in D. Details on slides. A place for your notes:
5) $A=\{<M, w>: w \in L(M)\}$ is not in D. Details on slides. A place for your notes:
6) $\mathrm{EqTMs}=\left\{<\mathrm{M}_{\mathrm{a}}, \mathrm{M}_{\mathrm{b}}>: \mathrm{L}\left(\mathrm{M}_{\mathrm{a}}\right)=\mathrm{L}\left(\mathrm{M}_{\mathrm{b}}\right)\right.$ \} is not in D . Details on slides. A place for your notes:
a) "Reduction" from A ANY
b) Reduction from $\mathrm{A}_{\text {all }}$
7) Practice: Show that these languages are not in D.

Note: Each can be shown to be undecidable using a reduction from H .
a) $\mathrm{A}_{\mathrm{ANY}}=\{\langle M\rangle$: TM M accepts at least one string $\}$
b) $\mathrm{A}_{\mathrm{ALL}}=\left\{\langle M\rangle: L(M)=\Sigma^{*}\right\}$
c) REJ $=\{\langle M, w\rangle$: Turing machine M rejects string $w\}$

