MA/CSSE 474 Day 38 Summary

- 1) Review from recent sessions:
 - a) Language L_1 (over alphabet Σ_1) is **mapping reducible** to language L_2 (over alphabet Σ_2) and we write $L_1 \le L_2$ if there is a Turing-computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that $\forall x \in \Sigma_1^*, x \in L_1$ if and only if $f(x) \in L_2$
 - b) Using reduction: If P_1 is reducible to P_2 ,
 - i) If P_2 is decidable, so is P_1 .
 - ii) If P_1 is not decidable, neither is P_2 .
 - c) A framework for using reduction to show undecidability.

Another way to say it: **mapping reduction** R from language L_1 to language L_2 is one or more Turing machines such that If there exists a Turing machine *Oracle* that decides (or semidecides) L_2 , then the TMs in R can be composed with *Oracle* to build a deciding (or semideciding) TM for L_1 .

- To show language L₂ undecidable:
- i) Choose a language L₁ that is already known not to be in D, and show that L₁ can be reduced to L₂.
 (1) Define the reduction R and show that it can be implemented by a TM.
- ii) Describe the composition C of R with Oracle (the purported TM that decides L_1).
 - (1) Show that C correctly decides L_1 iff Oracle exists. We do this by showing that C is correct. I.e., If $x \in L_1$, then C(x) accepts, and If $x \notin L_1$, then C(x) rejects.
- 2) $H_{ANY} = \{ \langle M \rangle : \text{there exists at least one string on which TM } M \text{ halts} \}$ is not in D
 - i) Two different reductions from H: Details on slides. A place for your notes:

- 3) Undecidable problems and languages (there is a table of problems and languages in the previous day's class notes.
- 4) H_{ALL} = {<M> : TM M halts on all inputs} is not in D. Details on slides. A place for your notes:

- 5) $A = \{ <M, w > : w \in L(M) \}$ is not in D. Details on slides. A place for your notes:
- 6) EqTMs={ $<M_a, M_b>: L(M_a)=L(M_b)$ } is not in D. Details on slides. A place for your notes:
 - a) "Reduction" from A_{ANY}
 - b) Reduction from A_{ALL}

7) Practice: Show that these languages are not in D.

Note: Each can be shown to be undecidable using a reduction from H.

a) A_{ANY} = {<*M*> : TM *M* accepts at least one string}

b) $A_{ALL} = \{ <M > : L(M) = \Sigma^* \}$

c) REJ = {<M, w> : Turing machine M rejects string w}