MA/CSSE 474 Day 37

- 1) **Reducibility Special case:** Language L_1 (over alphabet Σ_1) is **reducible** to language L_2 (over alphabet Σ_2) and we write $L_1 \le L_2$ if there is a Turing-computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that $\forall x \in \Sigma_1^*$, $x \in L_1$ if and only if $f(x) \in L_2$
 - a) If P₁ is reducible to P₂, then
 - i) If P_2 is decidable, so is P_1 .
 - ii) If P₁ is not decidable, neither is P₂.
 - b) The second part is the one that we will use most.
- 2) Another way to say it:
 - a) A **reduction** R from language L_1 to language L_2 is one or more Turing machines such that:
 - b) If there exists a Turing machine *Oracle* that decides (or semidecides) L_2 ,
 - c) then the TMs in R can be composed with *Oracle* to build a deciding (or semideciding) TM for L_1 .
- 3) Using Reduction for Undecidability
 - a) (R is a reduction from L_1 to L_2) \wedge (L_2 is in D) \rightarrow (L_1 is in D)
 - b) Contrapositive: If $(L_1 \text{ is in D})$ is false, then at least one of the two antecedents of that implication must be false. So: If $(R \text{ is a reduction from } L_1 \text{ to } L_2)$ is true and (L1 is in D) is false, then $(L_2 \text{ is in D})$ must be false.
 - c) **Application:** If L2 is a language that is known to not be in D, and we can find a reduction from L2 to L1, then L1 is also not in D.
- 4) A framework for using reduction to show undecidability. To show language L_2 undecidable:
 - a) Choose a language L_1 that is already known not to be in D, and show that L_1 can be reduced to L_2 .
 - b) Define the reduction *R* and show that it can be implemented by a *TM*.
 - c) Describe the composition C of R with Oracle (the purported TM that decides L_1).
 - d) Show that C does correctly decide L_1 iff Oracle exists. We do this by showing that C is correct. I.e.,
 - i) If $x \in L_1$, then C(x) accepts, and
 - ii) If $x \notin L_1$, then C(x) rejects.
- 5) **Example:** $H_{\varepsilon} = \{ \langle M \rangle : TM \ M \ halts \ on \ \varepsilon \}.$
 - a) H_{ε} is in SD.
 - b)
 - c) H_{ϵ} is not in D. Prove this by showing $H \leq H_{\epsilon}$. Details on slides. A place for notes:

d) The block diagram for C gives some insight into how the reduction shows that H_ε decidable implies H decidable.

- e) R can be implemented by a TM.
- f) Languages we are dealing with: H, H_{ϵ} , the language on which some machine M halts.
- g) Machines we are dealing with: Oracle, R, C, M, M#
- h) View the reduction as a C-like procedure. Reads input, writes output, both of which involve TM encodings/

- 6) Important elements of a reduction proof
 - a) A clear declaration of the reduction "from" and "to" languages.
 - b) A clear description of R.
 - c) If R is doing anything nontrivial, argue that it can be implemented as a TM.
 - d) Note that machine diagrams are not necessary or even sufficient in these proofs. Use them as thought devices, where needed.
 - e) Run through the logic that demonstrates how the "from" language is being decided by the composition of *R* and *Oracle*. You must do both accepting and rejecting cases.
 - f) Declare that the reduction proves that your "to" language is not in D.
- 7) Don't do the reduction backwards!
- 8) $H_{ANY} = \{ \langle M \rangle : \text{ there exists at least one string on which TM } M \text{ halts} \}$
 - a) In SD
 - b) Not in D. Two different reductions.

Undecidable problems and languages:

The Problem View	The Language View		
Does TM <i>M</i> halt on <i>w</i> ?	$H = \{ \langle M, w \rangle : M \text{ halts on } w \}$		
Does TM <i>M</i> not halt on <i>w</i> ?	$\neg H = \{ \langle M, w \rangle : M \text{ does not halt on } w \}$		
Does TM <i>M</i> halt on the empty tape?	$H_{\varepsilon} = \{ \langle M \rangle : M \text{ halts on } \varepsilon \}$		
Is there any string on which TM M halts?	$H_{ANY} = \{ \langle M \rangle : \text{ there exists at least one string on which TM } M \text{ halts } \}$		
Does TM M accept all strings?	$A_{ALL} = \{ \langle M \rangle : L(M) = \Sigma^* \}$		
Do TMs M_a and M_b accept the same languages?	EqTMs = $\{ \langle M_a, M_b \rangle : L(M_a) = L(M_b) \}$		
Is the language that TM M accepts regular?	TMreg = { <m>:L(M) is regular}</m>		