MA/CSSE 474 Day 36 Summary

- 1) Summary of results from last session:
 - a) The language $H = \{<M, w> : TM M \text{ halts on input string } w\}$ is in SD but not in D.
 - b) If H were in D, then SD would equal D
 - c) Every CF language is in D.
 - d) D is closed under complement
 - e) SD is not closed under complement.
 - f) A language L is in D iff both L and its complement are in SD.
 - g) The language $\neg H = \{ < M, w > : TM M \text{ does not halt on input string } w \}$ is not in SD.
- 2) Dovetailing: Run an infinite number of computations "in parallel". S[i, j] represents step j of computation i.
 - a) S[1, 1]
 - b) S[2, 1] S[1, 2]

 \neq PaR

- c) S[3, 1] S[2, 2] S[1, 3]
- d) S[4, 1] S[3, 2] S[2, 3] S[1, 4]
- e) For every i and j, S[i, j] will eventually happen.
- 3) A language is **Turing-enumerable** iff there is a Turing machine that enumerates it.

$$M_1$$
:

- a) A language is SD iff it is Turing-enumerable (TE).
 - i) TE \rightarrow SD. Given M that enumerates L, construct M' that semidecides L.
 - (1) Save w. Use M to enumerate L. As each string is enumerated, compare to w. If they match, accept.
 - ii) SD \rightarrow TE. Given M that semidecides L, construct M' that enumerates L.
 - (1) Enumerate all $w \in \Sigma^*$ lexicographically. As each is enumerated, use *M* to check it.
 - (2) The problem with this approach?
 - (3) Solution:
- 4) *M* lexicographically enumerates *L* iff *M* enumerates the elements of *L* in lexicographic order.
- 5) L is *lexicographically Turing-enumerable* iff there is a Turing machine that lexicographically enumerates it.
- 6) A language is in D iff it is lexicographically Turing-enumerable.
 - a) $D \rightarrow LTE$. Given M that decides L, construct M' that lexicographically enumerates L
 - i) *M*' lexicographically generates the strings in Σ* and tests each using *M* (*M* halts and accepts or rejects each).
 ii) It outputs those that are accepted by *M*.
 - b) LTE \rightarrow D. Given M that lexicographically enumerates L, construct M' that decides L.
 - i) Save w. Use M to start enumerating L. As each string is enumerated, compare to w. If they match, accept.
 - ii) If M ever generates a string that comes after w in lexicographic order, reject.
- 7) Problem P_1 is **reducible** to problem P_2 (written $P_1 \le P_2$) if there is a Turing-computable function f that finds, for an arbitrary instance I of P_1 , an instance f(I) of P_2 , and
 - a) f is defined such that for every instance I of P_1 ,

b) I is a yes-instance of P_1 if and only if f(I) is a yes-instance of P_2 .

- In some sense, \leq means "is no harder than" or "is at least as decidable as"
- c) So $P_1 \le P_2$ means "if we have a TM that decides P_2 , then there is a TM that decides P_1 .
- 8) Special case: Language L₁ (over alphabet Σ_1) is reducible to language L₂ (over alphabet Σ_2) and we write L₁ \leq L₂ if there is a Turing-computable function $f: \Sigma_1^* \to \Sigma_2^*$ such that $\forall x \in \Sigma_1^*, x \in L_1$ if and only if $f(x) \in L_2$
 - a) If P_1 is reducible to P_2 , then
 - i) If P_2 is decidable, so is P_1 .
 - ii) If P_1 is not decidable, neither is P_2 .
 - b) The second part is the one that we will use most.

- 9) Another way to say it:
 - a) A *reduction* R from language L_1 to language L_2 is one or more Turing machines such that:
 - b) If there exists a Turing machine Oracle that decides (or semidecides) L₂,
 - c) then the TMs in *R* can be composed with *Oracle* to build a deciding (or semideciding) TM for *L*₁.

10) Using Reduction for Undecidability

- a) (*R* is a reduction from L_1 to L_2) \land (L_2 is in D) \rightarrow (L_1 is in D)
- b) Contrapositive: If (L_1 is in D) is false, then at least one of the two antecedents of that implication must be false. So: If (R is a reduction from L_1 to L_2) is true and (L1 is in D) is false, then (L_2 is in D) must be false.
- c) **Application:** If L2 is a language that is known to not be in D, and we can find a reduction from L2 to L1, then L1 is also not in D.
- 11) A framework for using reduction to show undecidability. To show language L_2 undecidable:
 - a) Choose a language L_1 that is already known not to be in D, and show that L_1 can be reduced to L_2 .
 - b) Define the reduction *R* and show that it can be implemented by a TM.
 - c) Describe the composition C of R with Oracle (the purported TM that decides L_1).
 - d) Show that C does correctly decide L_1 iff Oracle exists. We do this by showing that C is correct. I.e.,
 - i) If $x \in L_1$, then C(x) accepts, and
 - ii) If $x \notin L_1$, then C(x) rejects.

12) **Example:** $H_{\varepsilon} = \{ <M > : TM \ M \text{ halts on } \varepsilon \}$. Show that it is not in D by showing $H \le H_{\varepsilon}$.

a) H_{ϵ} is in SD.

b) H_{ε} is not in D.