
MA/CSSE 474  Day 36 Summary  
1) Summary of results from last session: 

a) The language H = {<M, w> : TM M halts on input string w}  is in SD but not in D. 
b) If  H were in D, then SD would equal D  
c) Every CF language is in D. 
d) D is closed under complement 
e) SD is not closed under complement. 
f) A language L is in D iff both L and its complement are in SD. 
g) The language  ¬H = {<M, w> : TM M does not halt on input string w} is not in SD.   

2) Dovetailing:  Run an infinite number of computations "in parallel".  S[i, j] represents step j of computation i. 
a) S[1, 1] 
b) S[2, 1]    S[1, 2] 
c) S[3, 1]    S[2, 2]   S[1, 3] 
d) S[4, 1]    S[3, 2]   S[2, 3]   S[1, 4 ] 
e) For every i and j, S[i, j]  will eventually happen. 

3) A language is Turing-enumerable iff there is a Turing machine that enumerates it. 

 
 
 
a) A language is SD iff it is Turing-enumerable (TE). 

i) TESD.  Given M that enumerates L, construct M' that semidecides L. 
(1) Save w.  Use M to enumerate L.  As each string is enumerated, compare to w.  If they match, accept. 

ii) SDTE.  Given M that semidecides L, construct M' that enumerates L. 
(1) Enumerate all w ∈ Σ* lexicographically.   As each is enumerated, use M to check it.  
(2) The problem with this approach? 
(3) Solution: 

 
4) M lexicographically enumerates L iff M enumerates the elements of L in lexicographic order.   
5) L is lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumerates it. 
6) A language is in D iff it is lexicographically Turing-enumerable. 

a) DLTE.  Given M that decides L, construct M' that lexicographically enumerates L 
i) M' lexicographically generates the strings in Σ* and tests each using M (M halts and accepts or rejects each).   
ii) It outputs those that are accepted by M.   

b) LTED.  Given M that lexicographically enumerates L, construct M' that decides L. 
i) Save w.  Use M to start enumerating L.  As each string is enumerated, compare to w.  If they match, accept. 
ii) If M ever generates a string that comes after w in lexicographic order, reject. 

7) Problem P1 is reducible to problem P2 (written P1 ≤ P2) if there is a Turing-computable function f that finds, for an 
arbitrary instance I of P1, an instance f(I) of P2, and  
a) f is defined such that for every instance I of P1,  
b) I is a yes-instance of P1 if and only if f(I) is a yes-instance of P2. 
c) So P1 ≤ P2 means "if we have a TM that decides P2, then there is a TM that decides P1. 

8) Special case: Language L1 (over alphabet Σ1) is reducible to language L2 (over alphabet Σ2) and we write L1 ≤ L2 if 
there is a Turing-computable function  f : Σ1* → Σ2* such that ∀x ∈ Σ1*, x ∈ L1  if and only if f(x) ∈ L2  
a) If P1 is reducible to P2, then 

i) If P2 is decidable, so is P1. 
ii) If P1 is not decidable, neither is P2. 

b) The second part is the one that we will use most. 

In some sense, ≤ means "is no harder 
than" or "is at least as decidable as" 



9) Another way to say it: 
a) A reduction R from language  L1 to language  L2 is one or more Turing  machines such that:  
b) If there exists a Turing machine Oracle that decides (or semidecides) L2,  
c)    then the TMs in R can be composed with Oracle  to build a deciding (or semideciding) TM for L1.  

10) Using Reduction for Undecidability  
a) (R is a reduction from L1 to L2) ∧ (L2 is in D) → (L1 is in D) 
b) Contrapositive: If (L1 is in D) is false, then at least one of the two antecedents of that implication must be false.  

So: If  (R is a reduction from L1 to L2) is true and  (L1 is in D) is false,  then  (L2 is in D) must be false. 
c) Application:  If L2 is a language that is known to not be in D, and we can find a reduction from L2 to L1, then L1 

is also not in D. 
11) A framework for using reduction to show undecidability.  To show language L2 undecidable:  

a) Choose a language L1 that is already known not to be in D, and  show  that L1  can be reduced to L2. 
b) Define the reduction R and show that it can be implemented by a TM. 
c) Describe the composition C of R with Oracle (the purported TM that decides L1). 
d) Show that C does correctly decide L1 iff Oracle exists.  We do this by showing that C is correct.  I.e.,  

i) If x ∈ L1, then C(x) accepts, and 
ii) If x ∉ L1, then C(x) rejects. 

 
12) Example:  Hε = {<M> : TM M halts on ε}.  Show that it is not in D by showing H ≤ Hε. 

a) Hε is in SD.    
  
  
  

b) Hε is not in D.    
  
  
  
 

 

 


