MA/CSSE 474 Day 36 Summary

1) Summary of results from last session:
a) The language $\mathbf{H}=\{\langle M, w\rangle$: TM M halts on input string $w\}$ is in SD but not in D.
b) If H were in D, then $S D$ would equal D
c) Every CF language is in D.
d) D is closed under complement
e) SD is not closed under complement.
f) A language L is in D iff both L and its complement are in SD.
g) The language $\neg H=\{<M, w>$: TM M does not halt on input string $w\}$ is not in SD.
2) Dovetailing: Run an infinite number of computations "in parallel". $S[i, j]$ represents step j of computation i.
a) $\mathrm{S}[1,1]$
b) $\mathrm{S}[2,1] \mathrm{S}[1,2]$
c) $\mathrm{S}[3,1] \mathrm{S}[2,2] \mathrm{S}[1,3]$
d) $\mathrm{S}[4,1] \mathrm{S}[3,2] \mathrm{S}[2,3] \mathrm{S}[1,4]$
e) For every i and $\mathrm{j}, \mathrm{S}[\mathrm{i}, \mathrm{j}]$ will eventually happen.
3) A language is Turing-enumerable iff there is a Turing machine that enumerates it.
M_{1} :
$\stackrel{>}{>P \mathrm{aR}}$
M_{2} :

a) A language is $S D$ iff it is Turing-enumerable (TE).
i) $T E \rightarrow S D$. Given M that enumerates L, construct M ' that semidecides L.
(1) Save w. Use M to enumerate L. As each string is enumerated, compare to w. If they match, accept.
ii) $S D \rightarrow T E$. Given M that semidecides L, construct M ' that enumerates L.
(1) Enumerate all $w \in \Sigma^{*}$ lexicographically. As each is enumerated, use M to check it.
(2) The problem with this approach?
(3) Solution:
4) M lexicographically enumerates L iff M enumerates the elements of L in lexicographic order.
5) L is lexicographically Turing-enumerable iff there is a Turing machine that lexicographically enumerates it.
6) A language is in D iff it is lexicographically Turing-enumerable.
a) $D \rightarrow L T E$. Given M that decides L, construct M^{\prime} that lexicographically enumerates L
i) $\quad M^{\prime}$ lexicographically generates the strings in Σ^{*} and tests each using M (M halts and accepts or rejects each).
ii) It outputs those that are accepted by M.
b) LTE \rightarrow D. Given M that lexicographically enumerates L, construct M ' that decides L.
i) Save w. Use M to start enumerating L. As each string is enumerated, compare to w. If they match, accept.
ii) If M ever generates a string that comes after w in lexicographic order, reject.
7) Problem P_{1} is reducible to problem P_{2} (written $P_{1} \leq P_{2}$) if there is a Turing-computable function f that finds, for an arbitrary instance I of P_{1}, an instance $f(I)$ of P_{2}, and
a) f is defined such that for every instance I of P_{1},
b) I is a yes-instance of P_{1} if and only if $f(I)$ is a yes-instance of P_{2}.

In some sense, \leq means "is no harder
than" or "is at least as decidable as"
c) So $\mathrm{P}_{1} \leq \mathrm{P}_{2}$ means "if we have a TM that decides P_{2}, then there is a TM that decides P_{1}.
8) Special case: Language L_{1} (over alphabet Σ_{1}) is reducible to language L_{2} (over alphabet Σ_{2}) and we write $L_{1} \leq L_{2}$ if there is a Turing-computable function $f: \Sigma_{1}{ }^{*} \rightarrow \Sigma_{2}{ }^{*}$ such that $\forall x \in \Sigma_{1}{ }^{*}, x \in L_{1}$ if and only if $f(x) \in L_{2}$
a) If P_{1} is reducible to P_{2}, then
i) If P_{2} is decidable, so is P_{1}.
ii) If P_{1} is not decidable, neither is P_{2}.
b) The second part is the one that we will use most.
9) Another way to say it:
a) A reduction R from language L_{1} to language L_{2} is one or more Turing machines such that:
b) If there exists a Turing machine Oracle that decides (or semidecides) L_{2},
c) then the TMs in R can be composed with Oracle to build a deciding (or semideciding) TM for L_{1}.
10) Using Reduction for Undecidability
a) (R is a reduction from L_{1} to $\left.L_{2}\right) \wedge\left(L_{2}\right.$ is in $\left.D\right) \rightarrow\left(L_{1}\right.$ is in $\left.D\right)$
b) Contrapositive: If (L_{1} is in D) is false, then at least one of the two antecedents of that implication must be false. So: If (R is a reduction from L_{1} to L_{2}) is true and ($L 1$ is in D) is false, then (L_{2} is in D) must be false.
c) Application: If $L 2$ is a language that is known to not be in D, and we can find a reduction from $L 2$ to $L 1$, then $L 1$ is also not in D.
11) A framework for using reduction to show undecidability. To show language L_{2} undecidable:
a) Choose a language L_{1} that is already known not to be in D, and show that L_{1} can be reduced to L_{2}.
b) Define the reduction R and show that it can be implemented by a $T M$.
c) Describe the composition C of R with Oracle (the purported TM that decides L_{1}).
d) Show that C does correctly decide L_{1} iff Oracle exists. We do this by showing that C is correct. I.e.,
i) If $x \in L_{1}$, then $C(x)$ accepts, and
ii) If $x \notin L_{1}$, then $C(x)$ rejects.
12) Example: $H_{\varepsilon}=\{\langle M\rangle$: TM M halts on $\varepsilon\}$. Show that it is not in D by showing $H \leq H_{\varepsilon}$.
a) H_{ε} is in SD.
b) H_{ε} is not in D.

| IN |
| :--- | :--- | :--- |
| Semideciding TM |
| Enumerable |
| Unrestricted grammar |
| Deciding TM |
| Lexic. enum |
| L and $\neg L$ in SD |

