MA/CSSE 474 Day 33 Summary

- 1) **TM extensions**. For each extension, we can show that every extended machine has an equivalent basic machine.
 - a) Multi-track TM. Implementation: Input symbols are tuples of the input symbols from the tracks
 - b) Multiple-tape TM
 - i) The transition function for a *k*-tape Turing machine:
- 2) Example: Use two tapes to add two natural numbers (represented in binary)

Exercise: Use multiple tapes to multiply two natural numbers represented in binary. Description can be high-level.

- 3) **Theorem** (adding tapes adds no computing power): Let $M = (K, \Sigma, \Gamma, \delta, s, H)$ be a k-tape Turing machine for some k > 1. Then there is a standard TM M' where $\Sigma \subseteq \Sigma'$, and:
 - (1) On input X, M halts with output Z on the first tape iff M' halts in the same state with Z on its tape.
 - (2) On input x, if M halts in n steps, M' halts in $O(n_2)$ steps.
 - (a) Proof by construction:
 - (i) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols.

- 4) **Encoding a TM** M = $(K, \Sigma, \Gamma, \delta, s, H)$ as a string <M>:
 - i) Encode the states: Let i be $\log_2(|K|)$.
 - (1) Number the states from 0 to |K|-1 in binary (i bits for each state number):
 - (2) The start state, s, is numbered 0; Number the other states in any order.
 - (3) If t' is the binary number assigned to state t, then:
 - (a) If t is the halting state y, assign it the string yt'.
 - (b) If t is the halting state n, assign it the string nt'.
 - (c) If t is the halting state h, assign it the string ht'.
 - (d) If t is any other state, assign it the string qt'.
 - ii) Encode the tape alphabet: Let j be $\lceil \log_2(|\Gamma|) \rceil$.
 - (1) Number the tape alphabet symbols from 0 to $|\Gamma|$ 1 in binary.
 - (2) The blank symbol is always symbol number 0.
 - (3) The other symbols can be numbered in any order.

Example:

q0000
q0001 q0010 y0011
n0100 q0101 q0110
q0111 q1000

Example: $\Gamma = \{ \Box, b, c, d \}$. $\Box = a00$ b = a01 c = a10d = a11

- iii) Encode a transition: (state, input, state, output, move_direction). Example: (q000,a000,q110,a000,→)
- iv) **Encode s and H** (already included in the above)
- v) A special case of TM encoding
 - (1) One-state machine with no transitions that accepts only ε is encoded as (q0)
- vi) Encode other TMs: The encoding is just a list of the machine's transitions (in any order). Details on slides.
- - (1) Given a string w in Σ^* , is there a TM M such that w = <M>?
- 5) We can **enumerate all TMs**, so that we have the concept of "the ith TM"
- 6) We can have processes (TMs?) whose input and outputs are TM encodings:

Input: a TM M_1 that reads its input tape and performs some operation P on it.

Output: a TM M_2 that performs P on an empty input tape.

7) Encoding multiple inputs: $\langle x_1, x_2, ...x_n \rangle$

- 8) **Specification of U**, the Universal Turing Machine (UTM):
 - a) U starts with <M,w> on its input tape, then simulates M's action when it has input w:
 - b) U halts iff M halts on w.
 - c) If *M* is a deciding or semideciding machine, then:
 - i) If *M* accepts, U accepts.
 - ii) If M rejects, U rejects.
 - d) If M computes a function, then U(< M, w>) must equal M(w).

9) Operation of U

- a) Three tapes:
 - i) M's tape
 - ii) <M>
 - iii) M's state
- b) Initialize U:
 - i) start with <M,W> on tape 1
 - ii) Move the <M> part to tape 2, leaving <w> on tape 1.
 - iii) Figure out how many bits in encoded states, and use this to write <s> on tape 3.
- c) U simulates a move of M. Repeat:
 - i) On tape 2 find a quintuple on tape 2 (if any) that matches the current state and tape symbol
 - ii) Perform the transition by appropriately changing tapes 1 and 3
 - iii) If no matching quintuple on tape 2, halt
 - iv) If U halts, report the same info that M would report.

10) How long does U take to run?

11) The Church-Turing Thesis: If it is computable, it can be computed by a Turing Machine.