1) TMs as language recognizers. Let $M=(K, \Sigma, \Gamma, \delta, s,\{y, n\})$.
a) M accepts a string w iff $(s, q w) \mid-m^{*}\left(y, w^{\prime}\right)$ for some string w^{\prime}.
b) M rejects a string w iff $(s, q w) \mid-M^{*}\left(n, w^{\prime}\right)$ for some string w^{\prime}.
c) M decides a language $L \subseteq \Sigma^{*}$ iff for any string $w \in \Sigma^{*}$ it is true that:
i) if $w \in L$ then M accepts w, and
ii) if $w \notin L$ then M rejects w.
d) A language L is decidable iff \qquad .
e) We define the set \boldsymbol{D} to be the set of all decidable languages.
f) M semidecides L iff, for any string $w \in \Sigma m^{*}$:
i) $w \in L \rightarrow M$ accepts w
ii) $w \notin L \rightarrow M$ does not accept w. M may either \qquad or \qquad .
g) A language L is semidecidable iff there is a Turing machine that semidecides it.
h) We define the set SD to be the set of all semidecidable languages.
i) Another term that means the same thing as semidecidable: recursively enumerable.
j) Regular languages $\subset C F L s \subset D \subseteq S D \subseteq$ all languages. [The last two $\subseteq s$ are realy $\subset s$, but we still need to show it].
2) TMs can compute functions. Let $M=(K, \Sigma, \Gamma, \delta, s,\{h\})$.
a) $M(w)=z$ iff $(s, \square w) \mid-m^{*}(h, \square z)$.
b) Let $\Sigma^{\prime} \subseteq \Sigma$ be M^{\prime} s output alphabet, and let f be any function from Σ^{*} to $\Sigma^{\prime *}$.
i) M computes f iff, for all $w \in \Sigma^{*}$:
(1) if w is an input on which f is defined, then $\mathrm{M}(w)=f(w)$.
(2) otherwise $M(w)$ does not halt.
c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.
d) Computing numeric functions:
i) For any positive integer k, valuek (\boldsymbol{n}) returns the nonnegative integer that is encoded, base k, by the string n.
ii) TM M computes a function \boldsymbol{f} from \mathbb{N}_{m} to \mathbb{N} iff, for some k, valuek $\left(M\left(n_{1} ; n_{2} ; \ldots n_{m}\right)\right)=f\left(v a l u e_{k}\left(n_{1}\right), \ldots\right.$ valuek $\left(n_{m}\right)$).

Notice that the TM's function computes with strings ($\Sigma^{\star} \mapsto \Sigma^{\prime *}$), not directly with numbers.
3) TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine.
a) Multi-track TM. Input symbols are tuples of the input symbols from the tracks
b) Multiple-tape TM
i) The transition function for a k-tape Turing machine:
4) Theorem (adding tapes adds no computing power): Let $M=(K, \Sigma, \Gamma, \delta, s, H\}$ be a k-tape Turing machine for some $k>1$. Then there is a standard TM M^{\prime} where $\Sigma \subseteq \Sigma^{\prime}$, and:
(1) On input x, M halts with output z on the first tape iff M^{\prime} halts in the same state with z on its tape.
(2) On input x, if M halts in n steps, M^{\prime} halts in $\mathrm{O}\left(n_{2}\right)$ steps.
(a) Proof by construction:
(i) Treat the single tape as if it were multi-track. This gives M^{\prime} a large number of tape symbols:
5) Example: Use two tapes to add two natural numbers (represented in binary)
6) Exercise: Use multiple tapes to multiply two natural numbers (represented in binary)
7) Encoding a $\mathrm{TM} \mathrm{M}=(K, \Sigma, \Gamma, \delta, s, H)$ as a string $\langle\mathrm{M}>$:
i) Encoding the states: Let i be $\left\lceil\log _{2}(|K|)\right\rceil$.
(1) Number the states from 0 to $|K|-1$ in binary (i bits for each state number):
(2) The start state, s , is numbered 0 ; Number the other states in any order.
(3) If t^{\prime} is the binary number assigned to state t, then:
(a) If t is the halting state y, assign it the string $y t^{\prime}$.
(b) If t is the halting state n, assign it the string $n t^{\prime}$.
(c) If t is the halting state h, assign it the string $h t^{\prime}$.
(a) If t is any other state, assign it the string qt'.
ii) Encoding the tape alphabet: Let j be $\left\lceil\log _{2}(|\Gamma|)\right\rceil$.
(1) Number the tape alphabet symbols from 0 to $|\Gamma|-1$ in binary.
(2) The blank symbol is number 0 .
(3) The other symbols can be numbered in any order
iii) Encoding the transitions:
(1) (state, input, state, output, direction to move)
(2) Example: ($q 000, a 000, q 110, a 000, \rightarrow$)
iv) Encoding s and \mathbf{H} (already included in the above)
v) A special case of TM encoding
(1) One-state machine with no transitions that accepts only ε is encoded as (q0)
vi) Encoding other TMs: It is just a list of the machine's transitions:
(1) Detailed example on slide
vii) Consider the alphabet $\Sigma=\{(), a, q, y, n, h, 0,1,$, comma, $\rightarrow, \leftarrow\}$. Is the following question decidable?
(1) Given a string w in Σ^{*}, is there a TM M such that $w=\langle M>$?
8) We can enumerate all $T M s$, so that we have the concept of "the ith $T M$ "
9) We can have processes (TMs?) whose input and outputs are TM encodings:

Input: a TM M_{1} that reads its input tape and performs some operation P on it.

Output: a TM M_{2} that performs P on an empty input tape.

10) Encoding multiple inputs: $\left\langle x_{1}, x_{2}, \ldots x_{n}\right\rangle$

