- 1) **TMs as language recognizers**. Let $M = (K, \Sigma, \Gamma, \delta, s, \{y, n\})$.
 - a) *M* accepts a string *w* iff $(s, qw) | -M^*(y, w)$ for some string *w*.
 - b) *M* rejects a string *w* iff $(s, qw) | -M^*(n, w')$ for some string *w*.
 - c) *M* decides a language $L \subseteq \Sigma^*$ iff for any string $w \in \Sigma^*$ it is true that:
 - i) if $w \in L$ then M accepts w, and
 - ii) if $w \notin L$ then M rejects w.
 - d) A language *L* is *decidable* iff _____
 - e) We define the set **D** to be the set of all decidable languages.
 - f) *M* semidecides *L* iff, for any string $W \in \Sigma M^*$:
 - i) $w \in L \rightarrow M$ accepts w
 - ii) $w \notin L \rightarrow M$ does not accept w. M may either _____ or ____ or ____
 - g) A language L is **semidecidable** iff there is a Turing machine that semidecides it.
 - h) We define the set SD to be the set of all semidecidable languages.
 - i) Another term that means the same thing as semidecidable: recursively enumerable.
 - j) Regular languages \subset CFLs \subset D \subseteq SD \subseteq all languages. [The last two \subseteq s are realy \subset s, but we still need to show it].
- 2) TMs can compute functions. Let $M = (K, \Sigma, \Gamma, \delta, s, \{h\})$.
 - a) M(w) = z iff $(s, \Box w) \mid -M^*(h, \Box z)$.
 - b) Let $\Sigma' \subseteq \Sigma$ be M's output alphabet, and let f be any function from Σ^* to Σ'^* .
 - i) *M* computes *f* iff, for all $w \in \Sigma^*$:
 - (1) if w is an input on which f is defined, then M(w) = f(w).
 - (2) otherwise M(w) does not halt.

c) A function *f* is *recursive* or *computable* iff there is a Turing machine *M* that computes it and that always halts.

d) Computing numeric functions:

i) For any positive integer *k*, *value*_{*k*}(*n*) returns the nonnegative integer that is encoded, base *k*, by the string *n*.

ii) TM *M* computes **a function** *f* from \mathbb{N}_m to \mathbb{N} iff, for some *k*, $value_k(M(n_1; n_2; ..., n_m)) = f(value_k(n_1), ... value_k(n_m))$.

Notice that the TM's function computes with strings ($\Sigma^* \mapsto \Sigma'^*$), not directly with numbers.

- 3) TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine.
 a) Multi-track TM. Input symbols are tuples of the input symbols from the tracks
- a) Multi-track IM. Input symbols are tup b) Multiple tape TM
 - b) Multiple-tape TM
 - i) The transition function for a *k*-tape Turing machine:
- 4) Theorem (adding tapes adds no computing power): Let M = (K, Σ, Γ, δ, s, H} be a k-tape Turing machine for some k > 1. Then there is a standard TM M' where Σ ⊆ Σ', and:
 - (1) On input *x*, *M* halts with output *z* on the first tape iff *M*' halts in the same state with *z* on its tape.
 - (2) On input x, if M halts in n steps, M' halts in $O(n_2)$ steps.
 - (a) Proof by construction:
 - (i) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols:
- 5) Example: Use two tapes to add two natural numbers (represented in binary)

- 7) **Encoding a TM** M = (K, Σ , Γ , δ , s, H) as a string <M>:
 - i) **Encoding the states**: Let *i* be $\lceil \log_2(|K|) \rceil$.
 - (1) Number the states from 0 to |K|-1 in binary (i bits for each state number):
 - (2) The start state, s, is numbered 0; Number the other states in any order.
 - (3) If t' is the binary number assigned to state t, then:
 - (a) If t is the halting state y, assign it the string yt'.
 - (b) If *t* is the halting state *n*, assign it the string n*t*'.
 - (c) If *t* is the halting state *h*, assign it the string h*t*'.
 - (a) If *t* is any other state, assign it the string q*t*'.
 - ii) Encoding the tape alphabet: Let j be $\lceil \log_2(|\Gamma|) \rceil$.
 - (1) Number the tape alphabet symbols from 0 to $|\Gamma|$ 1 in binary.
 - (2) The blank symbol is number 0.
 - (3) The other symbols can be numbered in any order
 - iii) Encoding the transitions:
 - (1) (state, input, state, output, direction to move)
 - (2) Example: (q000,a000,q110,a000,→)
 - iv) Encoding s and H (already included in the above)
 - v) A **special case** of TM encoding
 - (1) One-state machine with no transitions that accepts only ϵ is encoded as (q0)
 - vi) Encoding other TMs: It is just a list of the machine's transitions:
 - (1) Detailed example on slide
 - vii) Consider the alphabet $\Sigma = \{(,), a, q, y, n, h, 0, 1, \text{ comma}, \rightarrow, \leftarrow\}$. Is the following question decidable? (1) Given a string w in Σ^* , is there a TM M such that w = <M>?
- 8) We can **enumerate all TMs**, so that we have the concept of "the ith TM"
- 9) We can have processes (TMs?) whose input and outputs are TM encodings:

Input: a TM M_1 that reads its input tape and performs some operation P on it.

Output: a TM M₂ that performs P on an empty input tape.

10) Encoding multiple inputs: $\langle x_1, x_2, ..., x_n \rangle$