
MA/CSSE 474 Day 31 Summary

1) TMs as language recognizers. Let M = (K, Σ, Γ, δ, s, {y, n}).

a) M accepts a string w iff (s, qw) |-M* (y, w′) for some string w′.
b) M rejects a string w iff (s, qw) |-M* (n, w′) for some string w′.
c) M decides a language L ⊆ Σ* iff for any string w ∈ Σ* it is true that:
i) if w ∈ L then M accepts w, and
ii) if w ∉ L then M rejects w.
d) A language L is decidable iff __.
e) We define the set D to be the set of all decidable languages.
f) M semidecides L iff, for any string w ∈ ΣM*:

i) w ∈ L → M accepts w
ii) w ∉ L → M does not accept w. M may either ________________ or _____________________.

g) A language L is semidecidable iff there is a Turing machine that semidecides it.
h) We define the set SD to be the set of all semidecidable languages.
i) Another term that means the same thing as semidecidable: recursively enumerable.
j) Regular languages ⊂ CFLs ⊂ D ⊆ SD ⊆ all languages. [The last two ⊆s are realy ⊂s, but we still need to show it].

2) TMs can compute functions. Let M = (K, Σ, Γ, δ, s, {h}).
a) M(w) = z iff (s, ☐w) |-M* (h, ☐z).
b) Let Σ′ ⊆ Σ be M’s output alphabet, and let f be any function from Σ* to Σ′*.

i) M computes f iff, for all w ∈ Σ*:
(1) if w is an input on which f is defined, then M(w) = f(w).
(2) otherwise M(w) does not halt.

c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always
halts.
d) Computing numeric functions:

i) For any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the
string n.
ii) TM M computes a function f from ℕm to ℕ iff, for some k, valuek(M(n1;n2;…nm)) = f(valuek(n1), …
valuek(nm)).

Notice that the TM's function computes with strings (Σ* ↦ Σ′*), not directly with numbers.
3) TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine.

a) Multi-track TM. Input symbols are tuples of the input symbols from the tracks
b) Multiple-tape TM

i) The transition function for a k-tape Turing machine:
4) Theorem (adding tapes adds no computing power): Let M = (K, Σ , Γ, δ, s, H} be a k-tape Turing machine for

some k > 1. Then there is a standard TM M' where Σ ⊆ Σ', and:
(1) On input x, M halts with output z on the first tape iff M' halts in the same state with z on its tape.
(2) On input x, if M halts in n steps, M' halts in O(n2) steps.

(a) Proof by construction:
(i) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols:

5) Example: Use two tapes to add two natural numbers (represented in binary)

6) Exercise: Use multiple tapes to multiply two natural numbers (represented in binary)

7) Encoding a TM M = (K, Σ, Γ, δ, s, H) as a string <M>:
i) Encoding the states: Let i be log2(|K|).

(1) Number the states from 0 to |K|-1 in binary (i bits for each state number):
(2) The start state, s, is numbered 0; Number the other states in any order.
(3) If t′ is the binary number assigned to state t, then:

(a) If t is the halting state y, assign it the string yt′.
(b) If t is the halting state n, assign it the string nt′.
(c) If t is the halting state h, assign it the string ht′.
(a) If t is any other state, assign it the string qt′.

ii) Encoding the tape alphabet: Let j be log2(|Γ|).
(1) Number the tape alphabet symbols from 0 to |Γ| - 1 in binary.
(2) The blank symbol is number 0.
(3) The other symbols can be numbered in any order

iii) Encoding the transitions:
(1) (state, input, state, output, direction to move)
(2) Example: (q000,a000,q110,a000,→)

iv) Encoding s and H (already included in the above)
v) A special case of TM encoding

(1) One-state machine with no transitions that accepts only ε is encoded as (q0)
vi) Encoding other TMs: It is just a list of the machine's transitions:

(1) Detailed example on slide
vii) Consider the alphabet Σ = {(,), a, q, y, n, h, 0, 1, comma, →, ←}. Is the following question decidable?

(1) Given a string w in Σ*, is there a TM M such that w = <M> ?
8) We can enumerate all TMs, so that we have the concept of "the ith TM"
9) We can have processes (TMs?) whose input and outputs are TM encodings:

10) Encoding multiple inputs: <x1, x2, …xn>

