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1) TMs as language recognizers. Let M = (K, Σ, Γ, δ, s, {y, n}). 

a) M accepts a string w iff (s, qw) |-M* (y, w′) for some string w′. 
b) M rejects a string w iff (s, qw) |-M* (n, w′) for some string w′. 
c) M decides a language L ⊆ Σ* iff for any string w ∈ Σ* it is true that: 
i) if w ∈ L then M accepts w, and 
ii) if w ∉ L then M rejects w. 
d) A language L is decidable iff ________________________________________. 
e) We define the set D to be the set of all decidable languages. 
f) M semidecides L iff, for any string w ∈ ΣM*: 

i) w ∈ L → M accepts w 
ii) w ∉ L → M does not accept w. M may either ________________ or _____________________. 

g) A language L is semidecidable iff there is a Turing machine that semidecides it. 
h) We define the set SD to be the set of all semidecidable languages. 
i) Another term that means the same thing as semidecidable: recursively enumerable. 
j) Regular languages ⊂ CFLs ⊂ D ⊆ SD ⊆ all languages. [The last two ⊆s are realy ⊂s, but we still need to show it]. 

2) TMs can compute functions. Let M = (K, Σ, Γ, δ, s, {h}). 
a) M(w) = z iff (s, ☐w) |-M* (h, ☐z). 
b) Let Σ′ ⊆ Σ be M’s output alphabet, and let f be any function from Σ* to Σ′*. 

i) M computes f iff, for all w ∈ Σ*: 
(1) if w is an input on which f is defined, then M(w) = f(w). 
(2) otherwise M(w) does not halt. 

c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always 
halts. 
d) Computing numeric functions: 

i) For any positive integer k, valuek(n) returns the nonnegative integer that is encoded, base k, by the 
string n. 
ii) TM M computes a function f from ℕm to ℕ iff, for some k, valuek(M(n1;n2;…nm)) = f(valuek(n1), … 
valuek(nm)). 

Notice that the TM's function computes with strings (Σ* ↦ Σ′*), not directly with numbers. 
3) TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine. 

a) Multi-track TM.  Input symbols are tuples of the input symbols from the tracks 
b) Multiple-tape TM 

i) The transition function for a k-tape Turing machine: 
4) Theorem (adding tapes adds no computing power): Let M = (K, Σ , Γ, δ, s, H} be a k-tape Turing machine for 

some k > 1. Then there is a standard TM M' where Σ ⊆ Σ', and: 
(1) On input x, M halts with output z on the first tape iff M' halts in the same state with z on its tape. 
(2) On input x, if M halts in n steps, M' halts in O(n2) steps. 

(a) Proof by construction: 
(i) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols: 

5) Example:  Use two tapes to add two natural numbers (represented in binary) 
 
 
 
 
 

  



6) Exercise:  Use multiple tapes to multiply two natural numbers (represented in binary) 
 
 
 
 
 
 
 
 
 
 
 

7) Encoding a TM M = (K, Σ, Γ, δ, s, H)  as a string <M>: 
i) Encoding the states: Let i be log2(|K|). 

(1)  Number the states from 0 to |K|-1 in binary (i bits for each state number):   
(2)  The start state, s, is numbered 0;  Number the other states in any order.  
(3)  If t′ is the binary number assigned to state t, then: 

(a)  If t is the halting state y, assign it the string yt′. 
(b)  If t is the halting state n, assign it the string nt′. 
(c)  If t is the halting state h, assign it the string ht′. 
(a)  If t is any other state, assign it the string qt′. 

ii) Encoding the tape alphabet:  Let j be log2(|Γ|). 
(1) Number the tape alphabet symbols from 0 to |Γ| - 1 in binary.   
(2) The blank symbol is number 0. 
(3) The other symbols can be numbered in any order 

iii) Encoding the transitions:   
(1) (state, input, state, output, direction to move) 
(2) Example:  (q000,a000,q110,a000,→) 

iv) Encoding s and H (already included in the above) 
v) A special case of TM encoding 

(1) One-state machine with no transitions that accepts only ε is encoded as (q0) 
vi) Encoding other TMs:  It is just a list of the machine's transitions: 

(1) Detailed example on slide 
vii) Consider the alphabet Σ = {(, ), a, q, y, n, h, 0, 1, comma, →, ←}. Is the following question decidable? 

(1) Given a string w in Σ*, is there a TM M such that w = <M> ? 
8) We can enumerate all TMs, so that we have the concept of  "the ith TM" 
9) We can have processes (TMs?) whose input and outputs are TM encodings:

 
10) Encoding multiple inputs: <x1, x2, …xn> 


