Announcements:

1) Exam 3 is a week from today.

Main ideas from today

1) Review of Macro language; look at some example machines.
2) Exercise: Initial input on the tape is an integer written in binary, most significant bit first (110 represents 6).

Using Elaine Rich's macro language notation, design a TM that replaces the binary representation of n by the binary representation of $n+1$.
3) TMs as language recognizers. Let $M=(K, \Sigma, \Gamma, \delta, s,\{y, n\})$.
a) M accepts a string w iff $(s, q w) \mid-m^{*}\left(y, w^{\prime}\right)$ for some string w^{\prime}.
b) M rejects a string w iff $(s, q w) \mid-m^{*}\left(n, w^{\prime}\right)$ for some string w^{\prime}.
c) M decides a language $L \subseteq \Sigma^{*}$ iff for any string $w \in \Sigma^{*}$ it is true that:
i) if $w \in L$ then M accepts w, and
ii) if $w \notin L$ then M rejects w.
d) A language L is decidable iff
e) We define the set \boldsymbol{D} to be the set of all decidable languages.
f) M semidecides L iff, for any string $w \in \Sigma_{M}{ }^{*}$:
i) $w \in L \rightarrow M$ accepts w
ii) $w \notin L \rightarrow M$ does not accept $w . M$ may either \qquad or \qquad .
g) A language L is semidecidable iff there is a Turing machine that semidecides it.
h) We define the set $\boldsymbol{S D}$ to be the set of all semidecidable languages.
i) Another term that means the same thing as semidecidable: recursively enumerable.
j) Regular languages $\subset C F L s \subset D \subseteq S D \subseteq$ all languages. [The last two $\subseteq s$ are realy $\subset s$, but we still need to show it].
4) TMs can compute functions. Let $M=(K, \Sigma, \Gamma, \delta, s,\{h\})$.
a) $M(w)=z \operatorname{iff}(s, \emptyset w) \mid-M^{*}(h, \emptyset z)$.
b) Let $\Sigma^{\prime} \subseteq \Sigma$ be M^{\prime} s output alphabet, and let f be any function from Σ^{*} to $\Sigma^{\prime *}$.
i) M computes f iff, for all $w \in \Sigma^{*}$:
(1) if w is an input on which f is defined, then $M(w)=f(w)$.

Notice that the TM's function computes with
strings ($\Sigma^{*} \mapsto \Sigma^{\prime *}$), not directly with numbers.
(2) otherwise $M(w)$ does not halt.
c) A function f is recursive or computable iff there is a Turing machine M that computes it and that always halts.
d) Computing numeric functions:
i) For any positive integer k, value $\boldsymbol{e}_{k}(\boldsymbol{n})$ returns the nonnegative integer that is encoded, base k, by the string n.
ii) TM M computes a function f from \mathbb{N}^{m} to \mathbb{N} iff, for some k, value ${ }_{k}\left(M\left(n_{1} ; n_{2} ; \ldots n_{m}\right)\right)=f\left(\right.$ value $_{k}\left(n_{1}\right), \ldots$ value $\left.\left(n_{m}\right)\right)$.
5) TM extensions. For each extension, we can show that every extended machine has an equivalent basic machine.
a) Multiple-tape $T M$
i) The transition function for a k-tape Turing machine:

$((K-H))$	Γ_{1}	to
	,Γ_{2}	$\left(K, \Gamma_{1^{\prime}},\{\leftarrow, \rightarrow, \uparrow\}\right.$
,	$, \Gamma_{2^{\prime}},\{\leftarrow, \rightarrow, \uparrow\}$	
,		
,	$\left.\Gamma_{k}\right)$	$\left., \Gamma_{k^{\prime}},\{\leftarrow, \rightarrow, \uparrow\}\right)$

ii) Theorem (adding tapes adds no computing power): Let $M=(K, \Sigma, \Gamma, \delta, s, H\}$ be a k-tape Turing machine for some $k>1$. Then there is a standard TM M^{\prime} where $\Sigma \subseteq \Sigma^{\prime}$, and:
(1) On input x, M halts with output z on the first tape iff M^{\prime} halts in the same state with z on its tape.
(2) On input x, if M halts in n steps, M^{\prime} halts in $O\left(n^{2}\right)$ steps.
iii) Proof by construction:
(1) Treat the single tape as if it were multi-track. This gives M^{\prime} a large number of tape symbols:
(a) Alphabet (Γ^{\prime}) of $M^{\prime}=\Gamma \cup(\Gamma \times\{0,1\})^{k}$ "The Representation" slide contains an example.
b) Non-deterministic TM (later ...)

