MA/CSSE 474 Day 30 Announcements and Summary

Announcements:

1) Exam 3 is a week from today.

Main ideas from today

- 1) Review of Macro language; look at some example machines.
- 2) Exercise: Initial input on the tape is an integer written in binary, most significant bit first (110 represents 6).

Using Elaine Rich's macro language notation, design a TM that replaces the binary representation of n by the binary representation of n+1.

- 3) TMs as language recognizers. Let $M = (K, \Sigma, \Gamma, \delta, s, \{y, n\})$.
 - a) *M* accepts a string w iff $(s, \underline{q}w) |_{-M}^* (y, w')$ for some string w'.
 - b) *M* rejects a string w iff $(s, \underline{q}w) \mid -M^* (n, w')$ for some string w'.
 - c) *M* decides a language $L \subseteq \Sigma^*$ iff for any string $w \in \Sigma^*$ it is true that:
 - i) if $w \in L$ then M accepts w, and
 - ii) if $w \notin L$ then *M* rejects *w*.
 - d) A language *L* is *decidable* iff _
 - e) We define the set **D** to be the set of all decidable languages.
 - f) *M* semidecides *L* iff, for any string $w \in \Sigma_M^*$:
 - i) $w \in L \rightarrow M$ accepts w
 - ii) $w \notin L \rightarrow M$ does not accept w. M may either ______ or _____
 - g) A language *L* is *semidecidable* iff there is a Turing machine that semidecides it.
 - h) We define the set **SD** to be the set of all semidecidable languages.
 - i) Another term that means the same thing as semidecidable: *recursively enumerable*.
 - j) Regular languages \subset CFLs \subset D \subseteq SD \subseteq all languages. [The last two \subseteq s are realy \subset s, but we still need to show it].
- 4) TMs can compute functions. Let $M = (K, \Sigma, \Gamma, \delta, s, \{h\})$.
 - a) M(w) = z iff $(s, \square w) \mid -M^* (h, \square z)$.
 - b) Let $\Sigma' \subseteq \Sigma$ be *M*'s output alphabet, and let *f* be any function from Σ^* to Σ'^* .
 - i) *M* computes *f* iff, for all *w* ∈ Σ*:
 (1) if *w* is an input on which *f* is defined, then M(*w*) = *f*(*w*).
 (2) otherwise M(*w*) does not halt.
 - c) A function *f* is *recursive* or *computable* iff there is a Turing machine *M* that computes it and that always halts.
 - d) Computing numeric functions:
 - i) For any positive integer k, value_k(n) returns the nonnegative integer that is encoded, base k, by the string n.
 - ii) TM *M* computes a function *f* from \mathbb{N}^m to \mathbb{N} iff, for some *k*, $value_k(M(n_1;n_2;...n_m)) = f(value_k(n_1), ... value_k(n_m))$.
- Notice that the TM's function computes with strings ($\Sigma^* \mapsto \Sigma'^*$), not directly with numbers.

5) **TM extensions**. For each extension, we can show that every extended machine has an equivalent basic machine.

a) Multiple-tape TM

i) The transition function for a *k*-tape Turing machine:

((<i>К-Н</i>), Г ₁	to	$(K, \Gamma_{1'}, \{\leftarrow, \rightarrow, \uparrow\})$
, Γ ₂		, Γ _{2′} , {←, →, ↑}
, .		, .
, .		· · ·
$, 1_{k}$		$, \Gamma_{k'}, \{\leftarrow, \rightarrow, \perp\})$

- ii) **Theorem** (adding tapes adds no computing power): Let $M = (K, \Sigma, \Gamma, \delta, s, H)$ be a k-tape Turing machine for some k > 1. Then there is a standard TM M' where $\Sigma \subseteq \Sigma'$, and:
 - (1) On input *x*, *M* halts with output *z* on the first tape iff *M*' halts in the same state with *z* on its tape.
 - (2) On input x, if M halts in n steps, M' halts in $O(n^2)$ steps.
- iii) Proof by construction:
 - (1) Treat the single tape as if it were multi-track. This gives M' a large number of tape symbols:
 (a) Alphabet (Γ') of M' = Γ ∪ (Γ × {0, 1})^k "The Representation" slide contains an example.
- b) Non-deterministic TM (later ...)