MA/CSSE 474 Day 29 Summary

- 1) A macro language for TMs. On a separate handout. You need to learn to read and write this language. Suggestion: Write notes about the macro language on your handout.
- 2) Exercise: What does this machine do?

Exercise: Initial input on the tape is an integer written in binary, most significant bit first (110 represents 6).
Design a TM that replaces the binary representation of *n* by the binary representation of *n*+1.

- 4) TMs as language recognizers. Let $M = (K, \Sigma, \Gamma, \delta, s, \{y, n\})$.
 - a) *M* accepts a string w iff $(s, \square w) |_{-M}^* (y, w')$ for some string w'.
 - b) *M* rejects a string w iff $(s, \square w) |_{-M}^* (n, w')$ for some string w'.
 - c) *M* decides a language $L \subseteq \Sigma^*$ iff for any string $w \in \Sigma^*$ it is true that:
 - i) if $w \in L$ then M accepts w, and
 - ii) if $w \notin L$ then M rejects w.
 - d) A language *L* is *decidable* iff there is a Turing machine *M* that decides it.
 - e) We define the set **D** to be the set of all decidable languages.
 - f) *M* semidecides *L* iff, for any string $w \in \Sigma_M^*$:
 - i) $w \in L \rightarrow M$ accepts w
 - ii) $w \notin L \rightarrow M$ does not accept w. M may either reject or fail to halt.
 - g) A language *L* is *semidecidable* iff there is a Turing machine that semidecides it.
 - h) We define the set **SD** to be the set of all semidecidable languages.