MA/CSSE 474 Day 28 Summary

1) Turing machine (TM) intro
a) Tape alphabet, blank symbol, two-way-infinite tape, read/write head.
b) Transition: based on current state and tape symbol, the TM
i) Changes to next state
ii) Writes a symbol on current tape square
iii) Moves left or right (
(1) In some other authors' equivalent TM models, staying on same square is option. Not here.
c) Formal TM definition. A deterministic TM M is ($K, \Sigma, \Gamma, \delta, s, H$):
i) K is a finite set of states;
ii) Σ is the input alphabet, which does not contain \square;
iii) Γ is the tape alphabet, which must contain \square and have Σ as a subset.
iv) $s \in K$ is the initial state;
v) $H \subseteq K$ is the set of halting states;
vi) δ is the transition function: (for a nondeterministic TM, we will need a more general relation Δ)

$(K-H)$	\times	Γ	to	K	\times	Γ	\times	$\{\rightarrow, \leftarrow\}$
non-halting	\times tape	\rightarrow	state	\times	tape	\times	direction to move	
state	char				char		$(R$ or $L)$	

2) Example: M takes as input a string in the language: $\left\{a^{i} b^{j}, 0 \leq j \leq i\right\}$, and adds $b^{\prime} s$ as required to make the number of b's equal the number of a's.
```
M=({1,2,3,4,5,6},{a,b},{a,b,\square,$,#},\delta,1,{6}),where \delta=
(
```


3) We will see how this machine works on several inputs.
4) You should then trace its action on aab:
5) Halting:
a) DFSM:
b) PDA:
c) TM :
6) Formal definitions of TM computation. Most of this is like same definitions for FSM, PDA.
a) Configuration: an element of

$K \times$	$\left((\Gamma-\{\square\}) \Gamma^{*}\right) \cup\{\varepsilon\}$	\times	$\Gamma \times\left(\Gamma^{*}(\Gamma-\{\square\})\right)$
state	before	current	after
	current	square	current
	square		square

b) Abbreviation: ($\mathrm{q}, \mathrm{ab}, \mathrm{b}, \mathrm{b}$) can be abbreviated as ($\mathrm{q}, \mathrm{abbb}$). ($\mathrm{q}, \varepsilon, \square, a b b b$) as ($\mathrm{q}, ~ \square \mathrm{abbb}$)
c) Initial configuration is always $(s, \square w)$. Tape head starts on the square before the input string.
d) Yields (similar to FSM and PDA yields, but δ is different):
i) $\left(q_{1}, w_{1}\right) \vdash_{M}\left(q_{2}, w_{2}\right)$ iff $\left(q_{2}, w_{2}\right)$ is derivable, via δ, in one step.
ii) For any TM M, let $\vdash_{M^{*}}$ be the reflexive, transitive closure of \vdash_{M}.
iii) Configuration C_{1} yields configuration C_{2} if: $C_{1} \vdash M^{*} C_{2}$.
iv) A path through M is a sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that C_{0} is the initial configuration and $C_{0} \vdash_{M} C_{1} \vdash_{M} C_{2} \vdash_{M} \ldots \vdash_{M} C_{n}$.
v) A computation by M is a path that halts.
vi) If a computation is of length n (has n steps), we can write: $C_{0} \vdash_{m}{ }^{n} C_{n}$

Class exercise: Try to build this TM together: If n and m are non-negative integers, monus(n, m) is defined to be $n-m$ if $n>m$, and 0 if $n \leq m$.
Draw the diagram for a TM M whose input is $\mathbf{1}^{\mathrm{n}} ; \mathbf{1}^{\mathrm{m}}$ and whose output is $\mathbf{1}^{\text {monus }(\mathrm{n}, \mathrm{m})}$. When M halts, the read/write head should be positioned on the blank before the first 1.

For practice later: A TM to recognize $\left\{w w^{R}: w \in\{a, b\}^{*}\right\}$.
If the input string is in the language, the machine should halt with y as its current tape symbol
If not, it should halt with n as its current tape symbol.
The final symbols on the rest of the tape may be anything.

