MA/CSSE 474 Day 28 Summary

- 1) Turing machine (TM) intro
 - a) Tape alphabet, blank symbol, two-way-infinite tape, read/write head.
 - b) Transition: based on current state and tape symbol, the TM
 - i) Changes to next state
 - ii) Writes a symbol on current tape square
 - iii) Moves left or right (
 - (1) In some other authors' equivalent TM models, staying on same square is option. Not here.
 - c) Formal TM definition. A deterministic TM M is (K, Σ , Γ , δ , s, H):
 - i) K is a finite set of states;
 - ii) Σ is the input alphabet, which does not contain \Box ;
 - iii) Γ is the tape alphabet, which must contain \Box and have Σ as a subset.
 - iv) $s \in K$ is the initial state;
 - v) $H \subseteq K$ is the set of halting states;
 - vi) δ is the transition function: (for a nondeterministic TM, we will need a more general relation Δ)

(K - H)×Γ to Κ Х Γ × $\{\rightarrow, \leftarrow\}$ non-halting \times tape direction to move \rightarrow state \times tape Х state char (R or L) char

2) Example: *M* takes as input a string in the language: $\{a^i b^j, 0 \le j \le i\}$, and adds b's as required to make the number of b's equal the number of a's.

- 3) We will see how this machine works on several inputs.
- 4) You should then trace its action on aab:

- 5) Halting:
 - a) DFSM:
 - b) PDA:
 - c) TM:
- 6) Formal definitions of TM computation. Most of this is like same definitions for FSM, PDA.
 - a) Configuration: an element of

 $\begin{array}{lll} \mathcal{K} \times & ((\Gamma - \{\Box\}) \ \Gamma^*) \cup \{\epsilon\} \ \times & \Gamma \ \times \ (\Gamma^* \ (\Gamma - \{\Box\})) \ \cup \{\epsilon\} \\ \text{state} & \text{before} & \text{current} & \text{after} \\ & \text{current} & \text{square} & \text{current} \\ & \text{square} & \text{square} \end{array}$

- b) Abbreviation: (q, ab, b, b) can be abbreviated as (q, $ab\underline{b}b$). (q, ε , \Box , abbb) as (q, $\underline{\Box}abbb$)
- c) Initial configuration is always (s, $\square w$). Tape head starts on the square before the input string.
- d) Yields (similar to FSM and PDA yields, but δ is different):
 - i) $(q_1, w_1) \vdash_{M} (q_2, w_2)$ iff (q_2, w_2) is derivable, *via* δ , in one step.
 - ii) For any TM *M*, let \vdash_M^* be the reflexive, transitive closure of \vdash_M .
 - iii) Configuration C_1 *yields* configuration C_2 if: $C_1 \vdash_M * C_2$.
 - iv) A *path* through *M* is a sequence of configurations C_0 , C_1 , ..., C_n for some $n \ge 0$ such that C_0 is the initial configuration and $C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M ... \vdash_M C_n$.
 - v) A **computation** by *M* is a path that halts.
 - vi) If a computation is of *length* n (has n steps), we can write: $C_0 \vdash_M ^n C_n$

Class exercise: Try to build this TM together: If *n* and *m* are non-negative integers, *monus(n, m)* is defined to be

n-m if n > m, and 0 if $n \le m$.

Draw the diagram for a TM M whose input is $1^n; 1^m$ and whose output is $1^{monus(n, m)}$.

When M halts, the read/write head should be positioned on the blank before the first 1.

For practice later: A TM to recognize { $ww^{R} : w \in \{a, b\}^{*}$ }.

If the input string is in the language, the machine should halt with y as its current tape symbol If not, it should halt with n as its current tape symbol.

The final symbols on the rest of the tape may be anything.