Main ideas from today:

1) $\{xcy : x, y \in \{0, 1\}^* \text{ and } x \neq y\}$

```
If L is a context-free language, then

\exists k \ge 1 \quad (\forall \text{ strings } w \in L, \text{ where } |w| \ge k

(\exists u, v, x, y, z \quad (w = uvxyz, vy \neq \varepsilon, |vxy| \le k, and

\forall q \ge 0 (uv^q xy^q z \text{ is in } L)))).
```

2) Variations on PDA: Acceptance by accepting state only, replace stack with queue, two stacks.

3) CFL closure:

- a) Union. New start symbol: add productions $S \rightarrow S_1$, $S \rightarrow S_2$
- b) Concatenation. New start symbol: add production $S \rightarrow S_1S_2$
- c) Kleene Star. New start symbol: add productions $S \rightarrow \varepsilon$, $S \rightarrow S S_1$
- d) Reverse. Transform grammar to Chomsky Normal form. Replace each production $A \rightarrow BC$ by $A \rightarrow CB$
- e) Not closed under complement: Consider AⁿBⁿCⁿ. (done a few days ago)
- f) Not closed under intersection: $L_1 = \{a^n b^n c^m : n, m \ge 0\}$ $L_2 = \{a^m b^n c^n : n, m \ge 0\}$
- g) Intersection of a CFL and a regular language is CF (same for difference of a regular lang. and a CF lang.)
- h) Don't try to use closure backwards! Sam principle as for regular languages.
- 4) A PDA may never halt or never finish reading its input.
- 5) Nondeterminism can lead to exponential running time.
- 6) Deterministic PDA M:
 - a) Δ_M contains no pairs of transitions that compete with each other, and
 - b) whenever *M* is in an accepting configuration it has no available moves.
- 7) A language *L* is *deterministic context-free* (DCFL) iff *L*\$ can be accepted by some deterministic PDA.
 - a) $L = a^* \cup \{a^n b^n : n > 0\}$ demonstrates the need for the \$ "end-of-input" symbol (details on slides).
 - b) DCFLs are closed under complement, but not under union or intersection (we will not show these)
- 8) Every CFL over a single-letter alphabet must be regular.
- 9) Algorithms and decision problems for CFLs
 - a) Membership: Given a CFL *L* and a string *w*, is *w* in *L*?
 - i) How not to do it (examples are on the slides)
 - (1) there is a CFG *G* that generates L. Try derivations in *G* and see whether any of them generates *w*.
 - (2) there is a PDA *M* that accepts L. Run *M* on *w*.
 - ii) But, if grammar is in CNF (ϵ is handled as a special case).
 - (1) Works but not very efficient
 - (2) There is an $O(N^3)$ dynamic programming algorithm (CKY, a.k.a. CYK)
 - iii) Or, can build a PDA with no ϵ -transitions from a GNF grammar.
 - b) Emptiness. Remove unproductive nonterminals form grammar. L empty iff S is not removed.
 - c) Finiteness. Let b be the branching factor of CFG. If language is infinite, some string of length between b^n and $b^n + b^{n+1}$ will be accepted. Enumerate and try them all.
 - d) Undecidable questions about CFLs:
 - i) Is $L = \Sigma^*$?
 - ii) Is the complement of *L* context-free?
 - iii) Is *L* regular?
 - iv) Is $L_1 = L_2$?
 - v) Is $L_1 \subseteq L_2$?
 - vi) Is $L_1 \cap L_2 = \emptyset$?
 - vii) Is L inherently ambiguous?
 - viii) Is G ambiguous?

10) Turing machine (TM) intro (if there is time, which will be amazing if it happens!)

- a) Tape alphabet, blank symbol, two-way-infinite tape, read/write head.
- b) Based on current state and tape symbol, the TM
 - i) Changes to next state
 - ii) Writes a symbol on current tape square
 - iii) Moves left or right (
 - (1) In some other authors' equivalent TM models, staying on same square is option. Not here.
- c) Formal TM definition. A deterministic TM M is (K, Σ , Γ , δ , s, H):
 - i) K is a finite set of states;
 - ii) Σ is the input alphabet, which does not contain \Box ;
 - iii) Γ is the tape alphabet, which must contain \Box and have Σ as a subset.
 - iv) $s \in K$ is the initial state;
 - v) $H \subseteq K$ is the set of halting states;
 - vi) δ is the transition **function**: (for a nondeterministic TM, we will need a more general relation Δ)

(1) $(K - H) \times \Gamma$ to $K \times \Gamma \times {\rightarrow, \leftarrow}$ non-halting \times tape \rightarrow state \times tape \times direction to move state char char (R or L)

- d) A TM is not guaranteed to halt. And there is no algorithm to take a TM M and find an equivalent TM that is guaranteed to halt.
- 11) Example: *M* takes as input a string in the language: $\{a^ib^j, 0 \le j \le i\}$, and adds b's as required to make the number of b's equal the number of a's.
- 12) Trace its action on aab:

