
MA/CSSE 474   Day 27 Summary   
 
Main ideas from today:        
1) {xcy : x, y ∈ {0, 1}* and x ≠ y}   

 
 
 
 

2) Variations on PDA:  Acceptance by accepting state only, replace stack with queue, two stacks. 
 
 

3) CFL closure: 
a) Union.  New start symbol:  add productions S → S1, S → S2 
b) Concatenation. New start symbol:  add production S → S1S2 
c) Kleene Star. New start symbol:  add productions S → ε, S → S S1 
d) Reverse.   Transform grammar to Chomsky Normal form.  Replace each production  A→BC by A→CB 
e) Not closed under complement:  Consider AnBnCn.  (done a few days ago) 
f) Not closed under intersection:  L1 = {anbncm: n, m ≥ 0}     L2 = {ambncn: n, m ≥ 0}      
g) Intersection of a CFL and a regular language is CF (same for difference of a regular lang. and a CF lang.) 
h) Don't try to use closure backwards!  Sam principle as for regular languages. 

4) A PDA may never halt or never finish reading its input. 
5) Nondeterminism can lead to exponential running time. 
6) Deterministic PDA M: 

a) ∆M contains no pairs of transitions that compete with each other, and 
b) whenever M is in an accepting configuration it has no available moves. 

7)   A language L is deterministic context-free (DCFL) iff L$ can be accepted by some deterministic PDA. 
a) L = a* ∪ {anbn : n > 0}  demonstrates the need for the $ “end-of-input” symbol (details on slides). 
b) DCFLs are closed under complement, but not under union or intersection (we will not show these) 

8) Every CFL over a single-letter alphabet must be regular. 
9) Algorithms and decision problems for CFLs 

a) Membership:  Given a CFL L and a string w, is w in L? 
i) How not to do it  (examples are on the slides) 

(1) there is a CFG  G that generates L.  Try derivations in G and see whether any of them generates w. 
(2) there is a PDA M that accepts L.  Run M on w. 

ii) But, if grammar is in CNF ….  (ε is handled as a special case).  
(1) Works but not very efficient 
(2) There is an O(N3) dynamic programming algorithm (CKY,   a.k.a. CYK) 

iii) Or, can build a PDA with no ε-transitions from a GNF grammar. 
b) Emptiness.   Remove unproductive nonterminals form grammar.  L empty iff S is not removed. 
c) Finiteness.  Let b be the branching factor of CFG.  If language is infinite, some string of length between bn and  

bn + bn+1 will be accepted.  Enumerate and try them all. 
d) Undecidable questions about CFLs: 

i) Is L = Σ*? 
ii) Is the complement of L context-free? 
iii) Is L regular? 
iv) Is L1 = L2? 
v) Is L1 ⊆ L2? 
vi) Is L1 ∩ L2 = ∅? 
vii) Is L inherently ambiguous? 
viii) Is G ambiguous? 

 
  

If L is a context-free language, then 
        ∃k ≥ 1   (∀ strings w ∈ L, where |w| ≥ k 
             (∃u, v, x, y, z    (w = uvxyz, vy ≠ ε,  |vxy| ≤ k,   
                                                           and  
                  ∀q ≥ 0 (uvqxyqz is in L)))). 
 



10) Turing machine (TM) intro   (if there is time, which will be amazing if it happens!) 
a) Tape alphabet, blank symbol, two-way-infinite tape, read/write head.   
b) Based on current state and tape symbol, the TM 

i) Changes to next state 
ii) Writes a symbol on current tape square 
iii) Moves left or right ( 

(1) In some other authors' equivalent TM models, staying on same square is option.  Not here. 
c) Formal TM definition.  A deterministic TM M is (K, Σ, Γ, δ, s, H): 

i) K is a finite set of states; 
ii) Σ is the input alphabet, which does not contain ☐; 
iii) Γ is the tape alphabet, which must contain ☐ and have Σ as a subset.   
iv) s ∈ K is the initial state; 
v) H ⊆ K is the set of halting states; 
vi) δ is the transition function:  (for a nondeterministic TM, we will need a more general relation Δ ) 

(1) (K - H)         ×  Γ         to       K  ×    Γ   × {→, ←} 
non-halting  × tape    →     state × tape    ×         direction to move 
 state              char     char             (R or L) 

 
d) A TM is not guaranteed to halt.  And there is no algorithm to take a TM M and find an equivalent TM that is 

guaranteed to halt. 
11) Example:  M takes as input a string in the language:   {aibj, 0 ≤ j ≤ i}, and adds b’s as required to make the number of b’s 

equal the number of a’s.   
12) Trace its action on aab: 

 


