Main ideas from today:

1) $\left\{x c y: x, y \in\{0,1\}^{*}\right.$ and $\left.x \neq y\right\}$

If L is a context-free language, then
$\exists k \geq 1 \quad(\forall$ strings $w \in L$, where $|w| \geq k$

$$
\begin{aligned}
&(\exists u, v, x, y, z \quad(w=u v x y z, v y \neq \varepsilon, \quad|v x y| \leq k, \\
& \text { and } \\
&\left.\left.\left.\forall q \geq 0\left(u v^{q} x y^{q} z \text { is in } L\right)\right)\right)\right) .
\end{aligned}
$$

2) Variations on PDA: Acceptance by accepting state only, replace stack with queue, two stacks.
3) CFL closure:
a) Union. New start symbol: add productions $S \rightarrow S_{1}, S \rightarrow S_{2}$
b) Concatenation. New start symbol: add production $S \rightarrow S_{1} S_{2}$
c) Kleene Star. New start symbol: add productions $S \rightarrow \varepsilon, S \rightarrow S S_{1}$
d) Reverse. Transform grammar to Chomsky Normal form. Replace each production $A \rightarrow B C$ by $A \rightarrow C B$
e) Not closed under complement: Consider $A^{n} B^{n} C^{n}$. (done a few days ago)
f) Not closed under intersection: $L_{1}=\left\{a^{n} b^{n} c^{m}: n, m \geq 0\right\} \quad L_{2}=\left\{a^{m} b^{n} c^{n}: n, m \geq 0\right\}$
g) Intersection of a CFL and a regular language is CF (same for difference of a regular lang. and a CF lang.)
h) Don't try to use closure backwards! Sam principle as for regular languages.
4) A PDA may never halt or never finish reading its input.
5) Nondeterminism can lead to exponential running time.
6) Deterministic PDA M:
a) Δ_{M} contains no pairs of transitions that compete with each other, and
b) whenever M is in an accepting configuration it has no available moves.
7) A language L is deterministic context-free (DCFL) iff $L \$$ can be accepted by some deterministic PDA.
a) $L=a^{*} \cup\left\{a^{n} b^{n}: n>0\right\}$ demonstrates the need for the $\$$ "end-of-input" symbol (details on slides).
b) DCFLs are closed under complement, but not under union or intersection (we will not show these)
8) Every CFL over a single-letter alphabet must be regular.
9) Algorithms and decision problems for CFLs
a) Membership: Given a CFL L and a string w, is w in L ?
i) How not to do it (examples are on the slides)
(1) there is a CFG G that generates L. Try derivations in G and see whether any of them generates w.
(2) there is a PDA M that accepts L. Run M on w.
ii) But, if grammar is in CNF (ε is handled as a special case).
(1) Works but not very efficient
(2) There is an $\mathrm{O}\left(\mathrm{N}^{3}\right)$ dynamic programming algorithm (CKY, a.k.a. CYK)
iii) Or, can build a PDA with no ε-transitions from a GNF grammar.
b) Emptiness. Remove unproductive nonterminals form grammar. Lempty iff S is not removed.
c) Finiteness. Let b be the branching factor of CFG. If language is infinite, some string of length between b^{n} and $b^{n}+b^{n+1}$ will be accepted. Enumerate and try them all.
d) Undecidable questions about CFLs:
i) Is $L=\Sigma^{*}$?
ii) Is the complement of L context-free?
iii) Is L regular?
iv) Is $L_{1}=L_{2}$?
v) Is $L_{1} \subseteq L_{2}$?
vi) Is $L_{1} \cap L_{2}=\varnothing$?
vii) Is L inherently ambiguous?
viii) Is G ambiguous?
10) Turing machine (TM) intro (if there is time, which will be amazing if it happens!)
a) Tape alphabet, blank symbol, two-way-infinite tape, read/write head.
b) Based on current state and tape symbol, the TM
i) Changes to next state
ii) Writes a symbol on current tape square
iii) Moves left or right (
(1) In some other authors' equivalent TM models, staying on same square is option. Not here.
c) Formal TM definition. A deterministic TM M is $(K, \Sigma, \Gamma, \delta, s, H)$:
i) K is a finite set of states;
ii) $\quad \Sigma$ is the input alphabet, which does not contain \square;
iii) Γ is the tape alphabet, which must contain \square and have Σ as a subset.
iv) $s \in K$ is the initial state;
v) $H \subseteq K$ is the set of halting states;
vi) δ is the transition function: (for a nondeterministic TM, we will need a more general relation Δ)
(1) $(K-H) \times \Gamma$ to $K \times \Gamma \times \quad\{\rightarrow, \leftarrow\}$
non-halting \times tape \rightarrow state \times tape \times direction to move
state char char (R or L)
d) A TM is not guaranteed to halt. And there is no algorithm to take a TM M and find an equivalent TM that is guaranteed to halt.
11) Example: M takes as input a string in the language: $\left\{a^{\prime} b^{j}, 0 \leq j \leq i\right\}$, and adds $b^{\prime} s$ as required to make the number of $b^{\prime} s$ equal the number of a's.
12) Trace its action on aab:

