
MA/CSSE 474 Day 27 Summary

Main ideas from today:
1) {xcy : x, y ∈ {0, 1}* and x ≠ y}

2) Variations on PDA: Acceptance by accepting state only, replace stack with queue, two stacks.

3) CFL closure:
a) Union. New start symbol: add productions S → S1, S → S2
b) Concatenation. New start symbol: add production S → S1S2
c) Kleene Star. New start symbol: add productions S → ε, S → S S1
d) Reverse. Transform grammar to Chomsky Normal form. Replace each production A→BC by A→CB
e) Not closed under complement: Consider AnBnCn. (done a few days ago)
f) Not closed under intersection: L1 = {anbncm: n, m ≥ 0} L2 = {ambncn: n, m ≥ 0}
g) Intersection of a CFL and a regular language is CF (same for difference of a regular lang. and a CF lang.)
h) Don't try to use closure backwards! Sam principle as for regular languages.

4) A PDA may never halt or never finish reading its input.
5) Nondeterminism can lead to exponential running time.
6) Deterministic PDA M:

a) ∆M contains no pairs of transitions that compete with each other, and
b) whenever M is in an accepting configuration it has no available moves.

7) A language L is deterministic context-free (DCFL) iff L$ can be accepted by some deterministic PDA.
a) L = a* ∪ {anbn : n > 0} demonstrates the need for the $ “end-of-input” symbol (details on slides).
b) DCFLs are closed under complement, but not under union or intersection (we will not show these)

8) Every CFL over a single-letter alphabet must be regular.
9) Algorithms and decision problems for CFLs

a) Membership: Given a CFL L and a string w, is w in L?
i) How not to do it (examples are on the slides)

(1) there is a CFG G that generates L. Try derivations in G and see whether any of them generates w.
(2) there is a PDA M that accepts L. Run M on w.

ii) But, if grammar is in CNF …. (ε is handled as a special case).
(1) Works but not very efficient
(2) There is an O(N3) dynamic programming algorithm (CKY, a.k.a. CYK)

iii) Or, can build a PDA with no ε-transitions from a GNF grammar.
b) Emptiness. Remove unproductive nonterminals form grammar. L empty iff S is not removed.
c) Finiteness. Let b be the branching factor of CFG. If language is infinite, some string of length between bn and

bn + bn+1 will be accepted. Enumerate and try them all.
d) Undecidable questions about CFLs:

i) Is L = Σ*?
ii) Is the complement of L context-free?
iii) Is L regular?
iv) Is L1 = L2?
v) Is L1 ⊆ L2?
vi) Is L1 ∩ L2 = ∅?
vii) Is L inherently ambiguous?
viii) Is G ambiguous?

If L is a context-free language, then
 ∃k ≥ 1 (∀ strings w ∈ L, where |w| ≥ k
 (∃u, v, x, y, z (w = uvxyz, vy ≠ ε, |vxy| ≤ k,
 and
 ∀q ≥ 0 (uvqxyqz is in L)))).

10) Turing machine (TM) intro (if there is time, which will be amazing if it happens!)
a) Tape alphabet, blank symbol, two-way-infinite tape, read/write head.
b) Based on current state and tape symbol, the TM

i) Changes to next state
ii) Writes a symbol on current tape square
iii) Moves left or right (

(1) In some other authors' equivalent TM models, staying on same square is option. Not here.
c) Formal TM definition. A deterministic TM M is (K, Σ, Γ, δ, s, H):

i) K is a finite set of states;
ii) Σ is the input alphabet, which does not contain ☐;
iii) Γ is the tape alphabet, which must contain ☐ and have Σ as a subset.
iv) s ∈ K is the initial state;
v) H ⊆ K is the set of halting states;
vi) δ is the transition function: (for a nondeterministic TM, we will need a more general relation Δ)

(1) (K - H) × Γ to K × Γ × {→, ←}
non-halting × tape → state × tape × direction to move
 state char char (R or L)

d) A TM is not guaranteed to halt. And there is no algorithm to take a TM M and find an equivalent TM that is

guaranteed to halt.
11) Example: M takes as input a string in the language: {aibj, 0 ≤ j ≤ i}, and adds b’s as required to make the number of b’s

equal the number of a’s.
12) Trace its action on aab:

