MA/CSSE 474 Day 25 Summary (and probably Day 26 also)

- 1) **Theorem from last class**: The class of languages accepted by PDAs is exactly the class of context-free languages. Recall: *context-free languages* are languages that can be defined by context-free grammars.
 - a) CFG \rightarrow PDA is the easy direction, and the one with the most practical use
 - i) Two approaches: Top-down parser and Bottom-up parser
- 2) Top-down parser PDA M from CFG G. Discovers a rightmost derivation from beginning to end.
 - a) Mirror the productions: Production A \rightarrow XYZ becomes (q, ϵ , A) \rightarrow (q, XYZ)
 - b) Match terminal symbols: $(q, a, a) \rightarrow (q, \epsilon)$
 - c) Get the process started: $(s, \varepsilon, \varepsilon) \rightarrow (q, S)$ [s is the start state of M, different from q] [S is start symbol of G]
 - d) The stack holds unmatched terminals and unexpanded nonterminals.
- 3) Bottom-up parser PDA M from CFG G. Discovers a leftmost derivation from end to beginning.
 - a) Mirror the productions: Production A \rightarrow XYZ becomes (p, ϵ , XYZ) \rightarrow (p, A) [p is the start state of M]
 - b) Shift terminal symbols from input to stack: $(p, a, \varepsilon) \rightarrow (p, a)$
 - c) Get the process started: (p, ε , S) \rightarrow (q, ε) [q is accepting state of M, different from q] [S is start symbol of G]
 - d) The stack holds prefixes of right sides of rules.
- 4) Show the transitions as the parser from the "bottom-up" slide parses "id + id * id" (write small or use two colmns)
 state stack unread input transition to use next

- 5) The number of languages over alphabet Σ is uncountable; number of context-free languages is countably infinite.
- 6) How to show that a language is context-free:
 - a)
 - b)
 - c)
- 7) Context-free pumping theorem:

If *L* is a context-free language, then $\exists k \ge 1 \quad (\forall \text{ strings } w \in L, \text{ where } |w| \ge k$ $(\exists u, v, x, y, z \quad (w = uvxyz, vy \ne \varepsilon, |vxy| \le k, and$ $\forall q \ge 0 \quad (uv^q xy^q z \text{ is in } L)))).$

- 8) As with the reg.-lang. pumping theorem, to show a language is *not* CF, we use the contrapositive. We do not get to choose the k or the breakdown into uvxyz. We choose the wεL, and for each breakdown, *q* a such that uv^qxy^qz∉L.
- 9) Make note of the slide on similarities and differences between the two pumping theorems.
- 10) $A^nB^nC^n = \{a^nb^nc^n, n \ge 0\}$ Three regions, two cases, details on slides.

11) { a^{n^2} : n ≥ 0}

12) $L = \{a^n b^m a^n, n, m \ge 0 \text{ and } n \ge m\}.$

Let $w = a^k b^k a^k$

aaa ... aaabbb ... bbbaaa ... aaa | 1 | 2 | 3 |

13) WcW = { $wcw : w \in \{a, b\}^*$ } (details on slide)

14) {(ab)ⁿaⁿbⁿ : n > 0}

15) { $x#y : x, y \in \{0, 1\}^*$ and $x \neq y$ }