MA/CSSE 474 Day 24 Announcements Summary

1) PDA for $L = \{a^m b^n : m \neq n; m, n > 0\}.$

- 2) Simple ways to reduce non-determinism (example on a slide):
 - a) Add end-of-input marker $\pm to \Sigma$
 - b) Add bottom-of-stack marker # to F
- 3) PDA for $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$.

- 4) The slides show how to use non-determinism to build a PDA for ¬AⁿBⁿCⁿ. If you don't understand it in class, be sure to go back and look at it.
- 5) The set of Context-free languages over alphabet Σ is **not** closed under complement. How do we know?
- 6) Is there PDA that accepts $\{ww : w \in \{a, b\}^*\}$
- 7) **Theorem**: The class of languages accepted by PDAs is exactly the class of context-free languages. Recall: *context-free languages* are languages that can be defined by context-free grammars.
 - a) CFG \rightarrow PDA is the easy direction, and the one with the most practical use
 - b) Two approaches:
 - i) Top-down parser
 - ii) Bottom-up parser

- 8) Top-down parser PDA M from CFG G.
 - a) Mirror the productions: Production A \rightarrow XYZ becomes (q, ϵ , A) \rightarrow (q, XYZ)
 - b) Match terminal symbols: $(q, a, a) \rightarrow (q, \epsilon)$
 - c) Get the process started: (s, ε , ε) \rightarrow (q, S) [s is the start state of M, different from q][S is start symbol of G]
 - d) The stack hold unmatched terminals and unexpanded nonterminals.
- 9) Show the steps in the top-down parse of the example on the "Another Example" slide (write small).

transition state unread input stack

10) Show the transitions as the parser from the "bottom-up" slide parses "id + id * id"

transition

unread input

stack