1. PDA definition: $M=(K, \Sigma, \Gamma, \Delta, s, A)$, where
a) \boldsymbol{K} is a finite set of states
b) Σ is the finite input alphabet
c) Γ is the finite stack alphabet [note that Σ and Γ can contain some of the same symbols]
d) $\boldsymbol{s} \in K$ is the initial (start) state
e) $\boldsymbol{A} \subseteq K$ is the set of accepting states, and
f) Δ is the transition relation. It is a finite subset of $\left(\begin{array}{l}K \\ \left.\times(\Sigma \cup\{\varepsilon\}) \times \quad \Gamma^{*}\right) \times\left(K \times \Gamma^{*}\right)\end{array}\right.$
i) i.e. (state, single input symbol or ε, string of stack symbols) \rightarrow (state, string of stack symbols)
ii) The first "string of stack symbols" will almost always be a single symbol or ε.
iii) Note that this is nondeterministic; there can be one, many, or zero transitions out of a given configuration.
2. Configurations:
a) A configuration of M is an element of $K \times \Sigma^{*} \times \Gamma^{*}$.
i) (current state, remaining unread input, what's on the stack (left end is top of stack)
b) The initial configuration of M is (s, w, ε), where w is the input string.
3. The stack.
a) Left end of the string is top of stack
b) If the stack contains def and we push $a b c$, the new stack content is $a b c d e f$.
4. Machine transitions: $\left(q_{1}, c w, \gamma_{1} \gamma\right) \vdash_{M}\left(q_{2}, w, \gamma_{2} \gamma\right)$ iff $\left(\left(q_{1}, c, \gamma_{1}\right),\left(q_{2}, \gamma_{2}\right)\right) \in \Delta$.
5. Yields, Computations, Acceptance, $\mathrm{L}(\mathrm{M})$, Rejection
a) Let $\vdash_{M}{ }^{*}$ be the reflexive, transitive closure of $\mid-м$.
b) Configuration C_{1} yields configuration C_{2} iff $C_{1} \mid-м^{*} C_{2}$
c) A computation by M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:
i) C_{0} is an initial configuration,
ii) C_{n} is of the form (q, ε, γ), for some state $q \in K_{M}$ and some string γ in Γ^{*}, and
iii) $C_{0} \vdash_{M} C_{1} \vdash_{M} C_{2} \vdash_{M} \ldots \vdash_{M} C_{n}$.
d) In an accepting computation of $M, C=(s, w, \varepsilon)+M^{*}(q, \varepsilon, \varepsilon)$, and $q \in A$.
i) M accepts a string w iff it has at least one accepting computation that begins with (s, w, ε).
e) Messy: Note that there are many possibilities for non-acceptance:
i) Read all the input and halt in a non-accepting state,
ii) Read all the input and halt in an accepting state with non-empty stack,
iii) Loop forever doing epsilon-transitions and never finish reading the input, or
iv) Reach a dead end where there are no legal transitions.
f) $L(M)$, the language accepted by M, is $\{w \in \Sigma$: M accepts $w\}$
g) A computation C of M is a rejecting computation iff:
i) $C=(s, w, \varepsilon) \vdash_{M}^{*}\left(q, w^{\prime}, \alpha\right)$,
ii) C is not an accepting computation, and
iii) M has no moves that it can make from (q, ε, α).
h) M rejects a string w iff all of its computations reject.
i) Note that it is possible that, on input w, M neither accepts nor rejects.
6. We look at PDA's for BAL, $A^{n} B^{n}, w c w^{R}$. Make sure that you understand how these work. Notes here:
7. A PDA for $\left\{a^{n} b^{2 n}: n \geq 0\right\}$
|
8. A PDA for PalEven $=\left\{w w^{\mathrm{R}}: w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
9. A PDA for $\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}$
10. $L=\left\{\mathrm{a}^{m} \mathrm{~b}^{n}: m \neq n ; m, n>0\right\}$ (Details on slides)
11. To reduce non-determinism we can add markers for bottom-of-stack and end-of-input.
12. PDA for $A^{n} B^{n} C^{n}=\left\{a^{n} b^{n} c^{n}: n \geq 0\right\}$
