MA/CSSE 474 Day 23 Summary Review PDA definitions; lots of PDA examples

1. **PDA definition:** $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where

- a) K is a finite set of states
- b) Σ is the finite input alphabet
- c) Γ is the finite **stack alphabet** [note that Σ and Γ can contain some of the same symbols]
- d) $s \in K$ is the **initial (start) state**
- e) $A \subseteq K$ is the set of **accepting states**, and
- f) Δ is the transition relation. It is a finite subset of $(\mathcal{K} \times (\Sigma \cup \{\epsilon\}) \times \Gamma^*) \times (\mathcal{K} \times \Gamma^*)$
 - i) i.e. (state, single input symbol or ε , string of stack symbols) \rightarrow (state, string of stack symbols)
 - ii) The first "string of stack symbols" will almost always be a single symbol or ϵ .
 - iii) Note that this is nondeterministic; there can be one, many, or zero transitions out of a given configuration.
- 2. Configurations:
 - a) A configuration of *M* is an element of $K \times \Sigma^* \times \Gamma^*$.
 - i) (current state, remaining unread input, what's on the stack (left end is top of stack)
 - b) The **initial configuration** of *M* is (s, w, ε) , where w is the input string.
- 3. The stack.
 - a) Left end of the string is top of stack
 - b) If the stack contains *def* and we push *abc*, the new stack content is *abcdef*.
- 4. Machine transitions: $(q_1, cw, \gamma_1\gamma) \vdash_M (q_2, w, \gamma_2\gamma)$ iff $((q_1, c, \gamma_1), (q_2, \gamma_2)) \in \Delta$.
- 5. Yields, Computations, Acceptance, L(M), Rejection
 - a) Let \vdash_M^* be the reflexive, transitive closure of \mid_{\neg_M} .
 - b) Configuration C_1 yields configuration C_2 iff $C_1 \mid -_M * C_2$
 - c) A *computation* by *M* is a finite sequence of configurations C_0 , C_1 , ..., C_n for some $n \ge 0$ such that:
 - i) C_0 is an initial configuration,
 - ii) C_n is of the form (q, ε, γ) , for some state $q \in K_M$ and some string γ in Γ^* , and
 - iii) $C_0 \vdash_M C_1 \vdash_M C_2 \vdash_M \ldots \vdash_M C_n$.
 - d) In an *accepting computation* of *M*, *C* = (*s*, *w*, ε) \vdash_M^* (*q*, ε , ε), and *q* \in *A*.
 - i) *M* accepts a string *w* iff it has at least one accepting computation that begins with (s, w, ɛ).
 - e) Messy: Note that there are many possibilities for non-acceptance:
 - i) Read all the input and halt in a non-accepting state,
 - ii) Read all the input and halt in an accepting state with non-empty stack,
 - iii) Loop forever doing epsilon-transitions and never finish reading the input, or
 - iv) Reach a dead end where there are no legal transitions.
 - f) L(M), the *language accepted by* M, is { $w \in \Sigma : M \text{ accepts } w$ }
 - g) A computation *C* of *M* is a *rejecting computation* iff:
 - $\mathsf{i}) \quad C=(s,\,w,\,\varepsilon) \vdash_M^* (q,\,w\,',\,\alpha),$
 - ii) C is not an accepting computation, and
 - iii) *M* has no moves that it can make from (q, ε, α) .
 - h) *M* rejects a string *w* iff all of its computations reject.
 - i) Note that it is possible that, on input *w*, *M* neither accepts nor rejects.
- 6. We look at PDA's for BAL, AⁿBⁿ, wcw^R. Make sure that you understand how these work. Notes here:

- 7. A PDA for $\{a^n b^{2n}: n \ge 0\}$
- 8. A PDA for PalEven ={ ww^{R} : $w \in \{a, b\}^{*}$ }

9. A PDA for $\{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$

- 10. $L = \{a^m b^n : m \neq n; m, n > 0\}$ (Details on slides)
- 11. To reduce non-determinism we can add markers for bottom-of-stack and end-of-input.
- 12. PDA for $A^nB^nC^n = \{a^nb^nc^n : n \ge 0\}$