MA/CSSE 474 Day 22 Summary

1. We can eliminate symmetric recursive rules by adding new intermediate nonterminals.

 $S^* \to \varepsilon$ $S^* \to S$ $S \to SS_I$ $S \to S_I$ $S_I \to (S)$ $S_I \to ()$

2. Another example: Arithmetic expressions:

```
E \to E + T
E \to T
T \to T * F
T \to F
F \to (E)
```

- 3. A **normal** *form F* for a set *C* of data objects is a form, i.e., a set of syntactically valid objects, with the following two properties:
 - a) For every element c of C, except possibly a finite set of special cases, there exists some element f of F such that f is equivalent to c with respect to some set of tasks.
 - b) F is simpler than the original form in which the elements of C are written.
 - i) By "simpler" we mean that at least some tasks are easier to perform on elements of *F* than they would be on elements of *C*.
- 4. **Chomsky Normal Form**, in which all rules are of one of the following two forms:
 - a) $X \rightarrow a$, where $a \in \Sigma$, or
 - b) $X \rightarrow BC$, where B and C are elements of $V \Sigma$.
- 5. Upper and lower bounds on number of steps in a derivation of a string whose length is n?
- 6. Converting a grammar to CNF is straightforward but tedious; read about it in the book or slides and practice it for homework.
- 7. **Greibach Normal Form**, in which all rules are of the form $X \to a$ β , where $a \in \Sigma$ and $\beta \in \mathbb{N}^*$.
- 8. Upper and lower bounds on number of steps in a derivation of a string whose length is n?
- 9. You are not required to look at the algorithm for converting to GNF (If you are interested see Appendix D)
- 10. **PDA definition:** $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where
 - a) **K** is a finite set of **states**
 - b) Σ is the finite input alphabet
 - c) Γ is the finite **stack alphabet** [note that Σ and Γ can contain some of the same symbols]
 - d) $s \in K$ is the initial (start) state
 - e) $A \subseteq K$ is the set of accepting states, and
 - f) Δ is the **transition relation.** It is a finite subset of $(K \times (\Sigma \cup \{\epsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)$
 - i) i.e. (state, single input symbol or ε , string of stack symbols) \rightarrow (state, string of stack symbols)
 - ii) The first "string of stack symbols" will almost always be a single symbol or ε .
 - iii) Note that this is nondeterministic; there can be one, many, or zero transitions out of a given configuration.

11. Configurations:

- a) A **configuration** of *M* is an element of $K \times \Sigma^* \times \Gamma^*$.
 - i) (current state, remaining unread input, what's on the stack (left end is top of stack)
- b) The **initial configuration** of M is (s, w, ε) , where w is the input string.
- 12. The stack.
 - a) Left end of the string is top of stack
 - b) If the stack contains def and we push abc, the new stack content is abcdef.
- 13. Machine transitions: $(q_1, cw, \gamma_1 \gamma) \mid -M (q_2, w, \gamma_2 \gamma)$ iff $((q_1, c, \gamma_1), (q_2, \gamma_2)) \in \Delta$.
- 14. Yields, Computations, Acceptance, L(M), Rejection
 - a) Let $|-M^*|$ be the reflexive, transitive closure of |-M|.
 - b) Configuration C_1 yields configuration C_2 iff $C_1 \mid -M^* C_2$
 - c) A *computation* by M is a finite sequence of configurations C_0 , C_1 , ..., C_n for some $n \ge 0$ such that:
 - i) C_0 is an initial configuration,
 - ii) C_n is of the form (q, ε, γ) , for some state $q \in K_M$ and some string γ in Γ^* , and
 - iii) $C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M ... \mid -_M C_n$.
 - d) In an **accepting computation** of M, $C = (s, w, \varepsilon) \mid_{-M} * (q, \varepsilon, \varepsilon)$, and $q \in A$.
 - i) M accepts a string w iff it has at least one accepting computation that begins with (s, w, ε) .
 - e) **Messy:** Note that there are many possibilities for non-acceptance:
 - i) Read all the input and halt in a non-accepting state,
 - ii) Read all the input and halt in an accepting state with non-empty stack,
 - iii) Loop forever doing epsilon-transitions and never finish reading the input, or
 - iv) Reach a dead end where there are no legal transitions.
 - f) L(M), the *language accepted by M*, is { $w \in \Sigma : M$ accepts w }
 - g) A computation C of M is a rejecting computation iff:
 - i) $C = (s, w, \varepsilon) |_{-M}^* (q, w', \alpha),$
 - ii) C is not an accepting computation, and
 - iii) M has no moves that it can make from (q, ε, α) .
 - h) *M* rejects a string w iff all of its computations reject.
 - i) Note that it is possible that, on input w, M neither accepts nor rejects.
- 15. We look at PDA's for BAL, AⁿBⁿ, wcw^R. Make sure that you understand how these work.
- 16. A PDA for $\{a^nb^{2n}: n \ge 0\}$

17. A PDA for PalEven = $\{ww^R: w \in \{a, b\}^*\}$