
MA/CSSE 474 Day 20 Summary

1) Review: CFG G = (V, G, R, S), where
a) Σ is the terminal alphabet; N is the nonterminal alphabet; V = Σ ∪ N is the rule alphabet; R is the set of

productions of the form A β, where A ∊ N and β ∊ V*; and S ∊ N is the start symbol.
b) One derivation step: x ⇒G y iff ∃α,β,γ∈V*, A∈N ((x = αAβ) ∧ (A → γ ∈ R) ∧ (y = α γ β))
c) ⇒G* is the reflexive, transitive closure of ⇒G
d) The language defined by a grammar: L(G) = {w ∈ Σ* : S ⇒G* w}
e) A language L is context-free iff there is some context-free grammar G such that L = L(G). CFL.

2) Prove that a grammar is correct: L: AnBn = {anbn : n ≥ 0} G: S → a S b, S → ε

a) Show that if w ∈ L, then S ⇒* w.
Induction on what? What to prove by induction? Use this to prove what we want.

3) Show that if S ⇒* w, then w ∈ L.
Induction on what? What to prove by induction? Use this to prove what we want.

4) Often we intend for the syntax of a CFL (such as a programming language) to imply structure. This is true of
programming languages, of course.

5) A parse tree, derived from a grammar G = (V, Σ, R, S), is a rooted, ordered tree in which:
a) Every leaf node is labeled with an element of Σ ∪ {ε},
b) The root node is labeled S,
c) Every other node is labeled with an element of N, and
d) If m is a non-leaf node labeled X and the (ordered) children of m are labeled x1, x2, …, xn,

i) then R contains the rule X → x1 x2, … xn.
6) CFG's can generate strings by substituting for nonterminals in any order.

a) Practical algorithms use a specific order
b) Leftmost and rightmost are the most common orders

7) A grammar is ambiguous if some string it generates has two different parse trees
a) Equivalently, two different leftmost derivations, or two different rightmost derivations

8) A CFL is inherently ambiguous if every CFG that generates it is ambiguous.
a) L = {anbncm: n, m ≥ 0} ∪ {anbmcm: n, m ≥ 0}

9) Ambiguity and undecidability. Both of the following problems are undecidable:
a) Given a context-free grammar G, is G ambiguous?
b) Given a context-free language L, is L inherently ambiguous?

10) Nonterminal A is nullable iff A ⇒ * ε. Algorithm for finding nullable nonterminals is similar to others we've seen.
11) Given G, we can easily find a grammar with no ε-productions that generates L(G) – { ε }
12) We can eliminate symmetric recursive rules
13) A normal form F for a set C of data objects is a form, i.e., a set of syntactically valid objects, with the following two

properties:
a) For every element c of C, except possibly a finite set of special cases, there exists some element f of F such that f

is equivalent to c with respect to some set of tasks.
b) F is simpler than the original form in which the of C are written.

i) By “simpler” we mean that at least some tasks are easier to perform on elements of F than they would be
on elements of C.

14) Chomsky Normal Form, in which all rules are of one of the following two forms:
a) X → a, where a ∈ Σ, or
b) X → BC, where B and C are elements of V - Σ.

15) Converting a grammar to CNF is straightforward; read about it in the book and figure it out.
16) Greibach Normal Form, in which all rules are of the form X → a β, where a ∈ Σ and β ∈ N*.

a) You do not need to look at the algorithm for converting to GNF.

