1. CFG (context-free grammar) formal definition
a. $\quad C F G G=(V, \Sigma, R, S)$, (each part is finite)

$$
\begin{array}{ll|l}
\text { Shorthand notation: } & S \rightarrow \varepsilon|\mathrm{a} T| \mathrm{b} T \\
& T \rightarrow \mathrm{a}|\mathrm{~b}| \mathrm{aS} \mid \mathrm{bS}
\end{array}
$$

i. $\quad \Sigma$ is the terminal alphabet; it contains the symbols that make up the strings in $L(G)$, and
ii. $\quad N$ is the nonterminal alphabet a set of working symbols that G uses to structure the language. These symbols disappear by the time the grammar finishes its job and generates a string.
(Note: $\Sigma \cap N=\varnothing$.)
iii. Rule alphabet: $\mathbf{V}=\Sigma \cup \mathbf{N}$
iv. $\quad \mathbf{R}$: A set of rules (a.k.a. productions) of the form $A \rightarrow \beta$, where $A \in N$ and $\beta \in V^{*}$.
v. G has a unique start symbol, $\mathbf{S} \in \mathrm{N}$
2. Formal definition of derivation and related things:
a. $\quad x \Rightarrow_{G} y \quad$ iff $\quad x=\alpha A \beta, y=\alpha \gamma \beta$, and $A \rightarrow \gamma$ is in R
b. $\quad W_{0} \Rightarrow_{G} W_{1} \Rightarrow_{G} W_{2} \Rightarrow_{G} \ldots \Rightarrow_{G} W_{n}$ is a derivation in G.
c. Let $\Rightarrow_{G}{ }^{*}$ be the reflexive, transitive closure of \Rightarrow_{G}.
d. Then the language generated by \boldsymbol{G}, denoted $L(G)$, is $\left\{w \in \Sigma^{*}: S \Rightarrow G^{*} w\right\}$.
e. A language L is context-free if there is some context-free grammar G such that $L=L(G)$.
3. In a regular grammar, every rule (production) in R must have a right-hand side that is
a) ε, or
b) a single terminal symbol, or
c) a single terminal followed by a single nonterminal.

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{bS}, \mathrm{~S} \rightarrow \mathrm{aT} \\
& \mathrm{~T} \rightarrow \mathrm{aS}, \mathrm{~T} \rightarrow \mathrm{~b}, \mathrm{~T} \rightarrow \varepsilon
\end{aligned}
$$

4. L is a regular language if and only if $L=L(G)$ for some regular grammar G.

Construction for of one direction (regular grammar \rightarrow FSM) : Details on slide
a. Do it for the example above.
5. Recursive grammar contains rules like $X \rightarrow w_{1} Y w_{2}$, where $Y \Rightarrow{ }^{*} w_{3} X w_{4}$ for some w_{1}, w_{2}, w_{3}, and w_{4} in V^{*}.
6. Self-embedding grammar contains rules like $X \rightarrow w_{1} Y w_{2}$, where $Y \Rightarrow{ }^{*} w_{3} X w_{4}$ and both $w_{1} w_{3}$ and $w_{2} w_{4}$ are in Σ^{+}.
7. If a CFG G is not self-embedding, the $L(G)$ is \qquad
8. Consider our grammar for Bal: $\mathbf{S} \rightarrow(\mathbf{S})|\varepsilon| \mathbf{S S}$ Draw a derivation tree for the string (()) (() ())
9. Hints for designing context-free grammars
a) $L=\left\{a^{n} b^{n} c^{m}: n, m \geq 0\right\}$

Union of two sets: $\quad \mathrm{A} \rightarrow \mathrm{B} \mid \mathrm{C}$ Concatenation: $\quad A \rightarrow B C$ Generate outside in: $A \rightarrow \mathrm{a} A \mathrm{~b}$
b) $\mathrm{L}=\left\{a^{n_{1}} b^{n_{1}} a^{n_{2}} b^{n_{2}} \ldots a^{n_{k}} b^{n_{k}}: \mathrm{k} \geq 0 \wedge \forall \mathrm{i} \leq \mathrm{k}\left(\mathrm{n}_{\mathrm{i}} \geq 0\right)\right\}$
c) $L=\left\{a^{n} b^{m}: n \neq m\right\}$
d) $L=\left\{w \in\{\mathrm{a}, \mathrm{b}\}^{*}: \#_{\mathrm{a}}(w)=\#_{\mathrm{b}}(w)\right\}$
10. Prove that a grammar is correct: $\mathrm{L}: \mathrm{A}^{n} \mathrm{~B}^{\mathrm{n}}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n}: n \geq 0\right\}$
$\mathrm{G}: S \rightarrow \mathrm{a} S \mathrm{~b}, S \rightarrow \varepsilon$
a) Show that if $w \in L$, then $S \Rightarrow^{*} w$.

Induction on what? What to prove by induction? Use this to prove what we want.
b) Show that if $S \Rightarrow^{*} w$, then $w \in L$.

Induction on what? What to prove by induction? Use this to prove what we want.

