1. CFG (context-free grammar) formal definition

Shorthand notation:	$S \rightarrow \epsilon \mid$	a <i>T</i> b <i>T</i>
	$T \rightarrow a \mid$	b aS bS

- a. CFG G = (V, Σ , R, S), (each part is finite)
 - i. Σ is the **terminal alphabet**; it contains the symbols that make up the strings in L(G), and
 - ii. N is the nonterminal alphabet a set of working symbols that G uses to structure the language. These symbols disappear by the time the grammar finishes its job and generates a string.
 (Note: Σ ∩ N = Ø.)
 - iii. Rule alphabet: $\mathbf{V} = \Sigma \cup \mathbf{N}$
 - iv. **R**: A set of rules (a.k.a. productions) of the form $A \rightarrow \beta$, where $A \in N$ and $\beta \in V^*$.
 - v. G has a unique **start symbol**, **S** ∈ N
- 2. Formal definition of *derivation* and related things:
 - a. $x \Rightarrow_G y$ iff $x = \alpha A\beta$, $y = \alpha \gamma \beta$, and $A \rightarrow \gamma$ is in R
 - b. $w_0 \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \ldots \Rightarrow_G w_n$ is a **derivation** in *G*.
 - c. Let \Rightarrow_{G}^{*} be the reflexive, transitive closure of \Rightarrow_{G} .
 - d. Then the **language generated by** G, denoted L(G), is $\{w \in \Sigma^* : S \Rightarrow_G^* w\}$.
 - e. A language L is **context-free** if there is some context-free grammar G such that L = L(G).
- 3. In a regular grammar, every rule (production) in R must have a right-hand side that is
 - a) *ɛ*, or
 - b) a single terminal symbol, or
 - c) a single terminal followed by a single nonterminal.

$$\begin{array}{l} S \rightarrow bS, \, S \rightarrow aT \\ T \rightarrow aS, \, T \rightarrow b, \, T \rightarrow \epsilon \end{array}$$

- 4. L is a regular language if and only if L = L(G) for some regular grammar G.
 Construction for of one direction (regular grammar → FSM) : *Details on slide*a. Do it for the example above.
- - 5. Recursive grammar contains rules like $X \rightarrow w_1 Y w_2$, where $Y \Rightarrow^* w_3 X w_4$ for some w_1 , w_2 , w_3 , and w_4 in V^* .
- 6. Self-embedding grammar contains rules like $X \rightarrow w_1 Y w_2$, where $Y \Rightarrow^* w_3 X w_4$ and both $w_1 w_3$ and $w_2 w_4$ are in Σ^+ .
- 7. If a CFG G is not self-embedding , the L(G) is _____
- 8. Consider our grammar for Bal: $S \rightarrow (S) | \epsilon | SS$ Draw a *derivation tree* for the string (())(()())

9. Hints for designing context-free grammars
a) L = {aⁿbⁿc^m : n, m ≥ 0}

Union of two sets:	$A \to B \mid C$
Concatenation:	$A \rightarrow BC$
Generate outside in:	$A \rightarrow aAb$

b)
$$L = \{ a^{n_1} b^{n_1} a^{n_2} b^{n_2} \dots a^{n_k} b^{n_k} : k \ge 0 \land \forall i \le k (n_i \ge 0) \}$$

c) $L = \{a^n b^m : n \neq m\}$

- d) $L = \{w \in \{a, b\}^* : \#_a(w) = \#_b(w)\}$
- 10. Prove that a grammar is correct: L: $A^nB^n = \{a^nb^n : n \ge 0\}$ G: $S \to a \ S \ b, \ S \to \varepsilon$
 - a) Show that if $w \in L$, then $S \Rightarrow^* w$. Induction on what? What to prove by induction? Use this to prove what we want.

b) Show that if $S \Rightarrow^* w$, then $w \in L$. Induction on what? What to prove by induction? Use this to prove what we want.