MA/CSSE 474 Day 17 Summary

- 1. Another decision problem. On the slides; this space is for your notes on that solution.
- 2. CFG (context-free grammar intro)
 - a. A rewrite system (a.k.a. production system or rule-based system) is:
 - i. a list of rules, and
 - ii. an algorithm for applying them
 - b. Simple-rewrite algorithm (given a string w and rewrite system R):
 - i. Set working-string to w.
 - ii. Until told by R to halt do:
 - 1. Match the lhs of some rule in R against some part of working-string.
 - 2. Replace the matched part of working-string with the rhs of the rule that was matched.
 - iii. Return working-string.
 - c. Example: w = SaS, Rules: $S \rightarrow aSb$, $aS \rightarrow \epsilon$
 - i. Questions the system must answer: Order to apply rules? When to quit?
 - d. *Example:* $S \rightarrow aSb$, $S \rightarrow bSa$, and $S \rightarrow \varepsilon$
 - i. Choices after: $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow$
 - e. Example: $S \rightarrow aTTb$, $T \rightarrow bTa$, and $T \rightarrow \varepsilon$
 - i. Choices after: $S \Rightarrow aTTb \Rightarrow$
 - f. When to stop a derivation: (either of these)
 - i. The working string no longer contains any nonterminal symbols (including, when it is ε).
 - ii. There are nonterminal symbols in the working string but none of them is in a substring that is the left-hand side of any rule in the grammar.
 - iii. Sometimes we can't stop!
 - g. CFG G = (V, Σ , R, S), (each part is finite)
 - i. Σ is the *terminal alphabet*; it contains the symbols that make up the strings in L(G), and
 - ii. N is the nonterminal alphabet a set of working symbols that G uses to structure the language. These symbols disappear by the time the grammar finishes its job and generates a string.
 (Note: Σ ∩ N = Ø.) Rule alphabet: V = Σ ∪ N
 - iii. **R**: A set of rules (a.k.a. productions) of the form $A \rightarrow \beta$, where $A \in N$ and $\beta \in V^*$.
 - iv. G has a unique start symbol, $S \in N$
 - h. Let's write CFGs to generate:

AⁿBⁿ

Bal

 ${a^mb^n : m >= n}$

- 3. In a regular grammar, every rule (production) in *R* must have a right-hand side that is
 - a) ε, or
 - b) a single terminal, or
 - c) a single terminal followed by a single nonterminal.

$S \rightarrow bS, S \rightarrow aT$	
$T \rightarrow aS, T \rightarrow b, T \rightarrow \epsilon$	•

4. L is a regular language if and only if L = L(G) for some regular grammar G.