MA/CSSE 474 Day 14

- 1. Closure properties of regular languages: closed under union, concatenation, Kleene star, complement, difference, reverse, letter substitution (a function that maps each letter in Σ to a string in Σ ').
- 2. In the homework you showed closure under intersection by construction. We can also do it using some other closure properties and DeMorgan's laws:
- 3. Using closure backwards: If $L_1 \cap L_2$ is regular, what can we say about L_1 and L_2 ?

If L_2 is not regular, what can we say about L_1L_2 ?

4. Showing that a language is *not* regular.

- a. All non-regular languages are infinite.
- b. Where does "infiniteness" come from in a regular language?
 - i. Regular expression approach:
 - ii. DFSM approach:
- c. If a DFSM has k states and a string whose length is at least k ...
- d. This is the basis for the "pumping theorem" (also known as the "pumping lemma") for regular languages.
- 5. Pumping theorem: **Informally**: If *L* is regular, then every long string in *L* is "infinitely pumpable (in and out)".

Formally, if L is regular, then	Tł
$\exists k \geq 1$ such that	(
$(\forall \text{ strings } w \in L,$	
$(w \ge k \rightarrow$	
$(\exists x, y, z (w = xyz,$	
$ xy \leq k$,	
$y \neq \varepsilon$, and	
$\forall q \ge 0 (xy^q z \text{ is in } L))))$	
6. Hopcroft and Ullman's "adversary argument" is a good way to	
understand this. The "adversary" is trying to show that L is regular.	

- 6. Hopcroft and Ullman's "adversary argument" is a good way to understand this. The "adversary" is trying to show that L is regular; we are showing that it is not.
 - a. Adversary picks k, x, y, z. We pick w, q. We must have a strategy for picking w and q that will work for any k and for any legal x, y, z.
- 7. Example: $\{a^nb^n : n \ge 0\}$ Details on slides. A place for notes:

	The contrapositive form:	
	(
)	
r;)	
-)	
	\rightarrow L is not regular	

8. Example: $\{a^n b^n : n \ge 0\}$ A different w. Details on slides. A place for notes:

9. Bal = { $w \in \{$ }, (}* : the parens are balanced}

10. PalEven = $\{ww^{R} : w \in \{a, b\}^{*}\}$

11. {a^{*n*}b^{*m*}: *n* ≥ *m*}

12. {aba^{*n*}b^{*n*} : $n \ge 0$ }