1. Closure properties of regular languages: closed under union, concatenation, Kleene star, complement, difference, reverse, letter substitution (a function that maps each letter in Σ to a string in Σ^{\prime}).
2. In the homework you showed closure under intersection by construction. We can also do it using some other closure properties and DeMorgan's laws:
3. Using closure backwards: If $L_{1} \cap L_{2}$ is regular, what can we say about L_{1} and L_{2} ?

If L_{2} is not regular, what can we say about $L_{1} L_{2}$?
4. Showing that a language is not regular.
a. All non-regular languages are infinite.
b. Where does "infiniteness" come from in a regular language?
i. Regular expression approach:
ii. DFSM approach:
c. If a DFSM has k states and a string whose length is at least k ...
d. This is the basis for the "pumping theorem" (also known as the "pumping lemma") for regular languages.
5. Pumping theorem: Informally: If L is regular, then every long string in L is "infinitely pumpable (in and out)".

Formally, if L is regular, then
$\exists k \geq 1$ such that
(\forall strings $w \in L$,

$$
(|w| \geq k \rightarrow
$$

$(\exists x, y, z(w=x y z$,
$|x y| \leq k$,
$y \neq \varepsilon$, and
$\forall q \geq 0\left(x y^{q} z\right.$ is in $\left.\left.\left.\left.L\right)\right)\right)\right)$)
6. Hopcroft and Ullman's "adversary argument" is a good way to understand this. The "adversary" is trying to show that L is regular; we are showing that it is not.
a. Adversary picks k, x, y, z. We pick $w, ~ q$. We must have

```
The contrapositive form:
l
            )
            )
        )
    )
)
L is not regular
``` a strategy for picking \(w\) and \(q\) that will work for any \(k\) and for any legal \(x, y, z\).
7. Example: \(\left\{a^{n} b^{n}: n \geq 0\right\}\) Details on slides. A place for notes:
8. Example: \(\left\{a^{n} b^{n}: n \geq 0\right\}\) A different w . Details on slides. A place for notes:
9. \(\mathrm{BaI}=\left\{w \in\{),(\}^{*}:\right.\) the parens are balanced \(\}\)
10. PalEven \(=\left\{w w^{R}: w \in\{\mathrm{a}, \mathrm{b}\}^{*}\right\}\)
11. \(\left\{a^{n} b^{m}: n \geq m\right\}\)
12. \(\left\{\mathrm{aba}^{n} \mathrm{~b}^{n}: n \geq 0\right\}\)```

